Generalized constructal optimization for solidification heat transfer process of slab continuous casting based on heat loss rate

Energy ◽  
2014 ◽  
Vol 66 ◽  
pp. 991-998 ◽  
Author(s):  
Huijun Feng ◽  
Lingen Chen ◽  
Zhihui Xie ◽  
Zemin Ding ◽  
Fengrui Sun
2014 ◽  
Vol 941-944 ◽  
pp. 1890-1894
Author(s):  
Guang Zheng Luo ◽  
Xin Liu ◽  
Ying Zhi ◽  
Xiang Hua Liu

The temperature field of continuous casting billet (CC-billet) is important to carry out the research on direct rolling of free-heating (DROF). The solidification and the heat transfer process of CC-billet from crystallizer to cutting point were studied by finite element method (FEM).The casting speed was improved in order to get reasonable temperature field during DROF.


Author(s):  
O S Sogut ◽  
A Durmayaz

An optimal performance analysis of a parabolic-trough direct-steam-generation solar-driven Rankine cycle power plant at maximum power (MP) and under maximum power density (MPD) conditions is performed numerically to investigate the effects of heat loss from the heat source and working fluid. In this study, the ideal Rankine cycle of the solar-driven power plant is modified into an equivalent Carnot-like cycle with a finite-rate heat transfer. The main assumptions of this study include that: (a) the parabolic collector is the thermal reservoir at a high temperature, (b) the heat transfer process between the collector and the working fluid is through either radiation and convection simultaneously or radiation only, and (c) the heat transfer process from the working fluid to the low-temperature thermal reservoir is convection dominated. Comprehensive discussions on the effect of heat loss during the heat transfer process from the hot thermal reservoir to the working fluid in the parabolic-trough solar collector are provided. The major results of this study can be summarized as follows: (a) the working fluid temperature at the hot-side heat exchanger decreases remarkably whereas the working fluid temperature at the cold-side heat exchanger does not show any significant change with increasing heat loss, (b) the MP, MPD, and thermal efficiencies decrease with increasing heat loss, and (c) the effect of heat loss on the decrease of thermal efficiency increases when convection is the dominant heat transfer mode at the hot-side heat exchanger.


Author(s):  
Chaolei Zhang ◽  
Yongsheng Lian ◽  
Michael Kempiak ◽  
Erik Hitzelberger ◽  
Scott Crane

An integrated experimental and numerical investigation was carried out to gain insight into the heat transfer phenomena and flow characteristics inside a domestic refrigerator. A refrigerator model was constructed using insulation foam sheets according to the inner dimensions of a household refrigerator. A reversal heat leak analysis was conducted on the constructed model in a temperature-controlled chamber, where the chamber temperature was lower than the inner temperature of the refrigerator. A temperature-controlled heater was mounted where the evaporator was. The heater was enclosed in a heater box to heat the air and to maintain a high temperature in the refrigerator. A variable speed fan was used to force air circulation. Thermocouples were used to measure the temperature at specified positions and to measure the average temperature difference across the refrigerator side walls. The correlation between the status of the heater and the control temperature variation pattern was analyzed. Heat loss rate was calculated using the data from the thermocouples too. The calculated heat loss rate closely matched the generated heat by the heater and the fan. Moreover, according to the results with different input voltages, the variation trend of the heat flux density was analyzed. A conjugate heat transfer analysis was conducted based on the constructed model using Fluent. The heater was modeled as a heat volume source and the fan was modeled using a pressure jump condition based on the experiment result. Comparisons were made between the experimental and numerical results. The predicted heat loss rate and the heat flux density through the walls matched very well with the experimental results. And the variation trend of the heat flux density with different input voltages also showed the same trend as the experimental result. And the airflow pattern and the temperature distribution were also analyzed in detail.


2012 ◽  
Vol 184-185 ◽  
pp. 1185-1188
Author(s):  
Ming En Guo ◽  
Yun Xu Shi ◽  
Yu Chen Guo

Study the horizontal continuous casting mold solidification heat transfer process is not only to optimize the structure of the mold so that it has a uniform stress field, to improve the quality of slab, to extend the mold life basis, and improve production efficiency and cost-effective method. Therefore, oxygen-free copper horizontal continuous casting process as the research object, the establishment of a level of TU1 billet continuous casting mold solidification heat transfer model for the simulation of oxygen-free copper horizontal continuous casting mold solidification and heat transfer process has laid a theoretical foundation.


2012 ◽  
Vol 217-219 ◽  
pp. 2194-2197 ◽  
Author(s):  
Li Guang Zhu ◽  
Xiang Ming Jia ◽  
Xing Juan Wang ◽  
Zhi Hao Li

Abstract. Soft-contact electromagnetic continuous casting is a new technology to improve the surface quality of billet. The soft-contact electromagnetic continuous casting mold heat transfer mechanism was discussed through the molten steel heat transfer process in the mold in this paper. The aspect that previous studies have not designed in the heat transfer process has been pointed out in the last. The researchers did not add the flux film as a heat transfer medium,but the slag in the mold is a very important thermal resistance actually.


2020 ◽  
Vol 786 (11) ◽  
pp. 30-34
Author(s):  
A.M. IBRAGIMOV ◽  
◽  
L.Yu. GNEDINA ◽  

This work is part of a series of articles under the general title The structural design of the blast furnace wall from efficient materials [1–3]. In part 1, Problem statement and calculation prerequisites, typical multilayer enclosing structures of a blast furnace are considered. The layers that make up these structures are described. The main attention is paid to the lining layer. The process of iron smelting and temperature conditions in the characteristic layers of the internal environment of the furnace is briefly described. Based on the theory of A.V. Lykov, the initial equations describing the interrelated transfer of heat and mass in a solid are analyzed in relation to the task – an adequate description of the processes for the purpose of further rational design of the multilayer enclosing structure of the blast furnace. A priori the enclosing structure is considered from a mathematical point of view as the unlimited plate. In part 2, Solving boundary value problems of heat transfer, boundary value problems of heat transfer in individual layers of a structure with different boundary conditions are considered, their solutions, which are basic when developing a mathematical model of a non-stationary heat transfer process in a multi-layer enclosing structure, are given. Part 3 presents a mathematical model of the heat transfer process in the enclosing structure and an algorithm for its implementation. The proposed mathematical model makes it possible to solve a large number of problems. Part 4 presents a number of examples of calculating the heat transfer process in a multilayer blast furnace enclosing structure. The results obtained correlate with the results obtained by other authors, this makes it possible to conclude that the new mathematical model is suitable for solving the problem of rational design of the enclosing structure, as well as to simulate situations that occur at any time interval of operation of the blast furnace enclosure.


2003 ◽  
Author(s):  
B. X. Wang ◽  
H. Li ◽  
X. F. Peng ◽  
L. X. Yang

The development of a numerical model for analyzing the effect of the nano-particles’ Brownian motion on the heat transfer is described. By using the Maxwell velocity distribution relations to calculate the most possible velocity of fluid molecules at certain temperature gradient location around the nano-particle, the interaction between fluid molecules and one single nano-particle is analyzed and calculated. Based on this, a syntonic system is proposed and the coupled effect that Brownian motion of nano-particles has on fluid molecules is simulated. This is used to formulate a reasonable analytic method, facilitating laboratory study. The results provide the essential features of the heat transfer process, contributed by micro-convection to be considered.


2011 ◽  
Vol 393-395 ◽  
pp. 412-415
Author(s):  
Jian Hua Zhong ◽  
Li Ming Jiang ◽  
Kai Feng

In this article, finned copper tube used in the central air conditioning was acted as the discussed object. According to the combination with actual processing and theoretical calculations, Five finned tube was selected with typical structural parameters, and established their entity model using Pro/E, then the heat transfer process of finned tube was simulated through the ANSYS, the effect of the fin height, fin thickness and other structure parameters to the heat transfer enhancement of finned tube was researched. Meantime the efficiency of the heat transfer under different convection heat transfer coefficient was also studied.


2015 ◽  
Vol 1088 ◽  
pp. 153-158 ◽  
Author(s):  
An Gui Hou ◽  
Yi Min ◽  
Cheng Jun Liu ◽  
Mao Fa Jiang

A heat transfer and solidification model of slab continuous casting process was developed, and the nail-shooting experiments were carried out to verify and improve the prediction accuracy. The comparison between the simulation and the measurements results showed that, there exists difference between the model predicted liquid core length and the calculated liquid core length according to the measurement results of the solidification shell thickness. In the present study, the value of constant a in the heat transfer coefficient calculation formula was corrected through back-calculation, results showed that, the suitable value of a is 31.650, 33.468 and 35.126 when the casting speed is 0.8m·min-1, 0.9m·min-1 and 1.0m·min-1 respectively, which can meet the liquid core length of the measurement results. The developed model built a foundation for the application of dynamic secondary cooling, and dynamic soft reduction.


Sign in / Sign up

Export Citation Format

Share Document