GhWRKY46 from Upland Cotton positively Regulates the Drought and Salt stress Responses in Plant

Author(s):  
Yu Li ◽  
Hao Chen ◽  
Shengting Li ◽  
Cuiling Yang ◽  
Qunying Ding ◽  
...  
2014 ◽  
Vol 55 (11) ◽  
pp. 1892-1904 ◽  
Author(s):  
Minjie Fu ◽  
Hyun Kyung Kang ◽  
Seung-Hyun Son ◽  
Seong-Ki Kim ◽  
Kyoung Hee Nam

2021 ◽  
Author(s):  
Gajendra Singh Jeena ◽  
Ujjal Jyoti Phukan ◽  
Neeti Singh ◽  
Ashutosh Joshi ◽  
Alok Pandey ◽  
...  

ABSCISIC ACID REPRESSOR-1 (ABR1), an APETALA2 (AP2) domain containing transcription factor (TF) contribute important function against variety of external cues. Here, we report an AP2/ERF TF, AtERF60 that serves as an important regulator of ABR1 gene. AtERF60 is induced in response to drought, salt, abscisic acid (ABA), salicylic acid (SA), and bacterial pathogen PstDC3000 infection. AtERF60 interacts with DEHYDRATION RESPONSE ELEMENTS (DRE1/2) and GCC box indicating its ability to regulate multiple responses. Overexpression of AtERF60 results in the drought and salt stress tolerant phenotype in both seedling and mature Arabidopsis plants in comparison with the wild type (WT-Col). However, mutation in AtERF60 showed hyperactive response against drought and salt stress in comparison with its overexpression and WT. Microarray and qRT-PCR analysis of overexpression and mutant lines indicated that AtERF60 regulates both abiotic and biotic stress inducible genes. One of the differentially expressing transcripts was ABR1 and we found that AtERF60 interacts with the DRE cis-elements present in the ABR1 promoter. The mutation in AtERF60 showed ABA hypersensitive response, increased ABA content, and reduced susceptibility to PstDC3000. Altogether, we conclude that AtERF60 represses ABR1 transcript by binding with the DRE cis-elements and modulates both abiotic and biotic stress responses in Arabidopsis.


2010 ◽  
Vol 51 (9) ◽  
pp. 1499-1514 ◽  
Author(s):  
Sun Mi Huh ◽  
Eun Kyeung Noh ◽  
Hye Gi Kim ◽  
Byeong Wook Jeon ◽  
Kisuk Bae ◽  
...  

2011 ◽  
Vol 77 (6) ◽  
pp. 547-563 ◽  
Author(s):  
Hao Du ◽  
Linhong Liu ◽  
Lei You ◽  
Mei Yang ◽  
Yubing He ◽  
...  

Agronomy ◽  
2021 ◽  
Vol 11 (6) ◽  
pp. 1049
Author(s):  
Salisu Bello Sadau ◽  
Adeel Ahmad ◽  
Sani Muhammad Tajo ◽  
Sani Ibrahim ◽  
Bello Babatunde Kazeem ◽  
...  

Cotton production is hampered by a variety of abiotic stresses that wreak havoc on the growth and development of plants, resulting in significant financial losses. According to reports, cotton production areas have declined around the world as a result of the ongoing stress. Therefore, plant breeding programs are concentrating on abiotic stress-tolerant cotton varieties. Mitogen-activated protein kinase (MAPK) cascades are involved in plant growth, stress responses, and the hormonal signaling pathway. In this research, three abiotic stresses (cold, drought, and salt) were analyzed on GhMPK3 transformed Arabidopsis plants. The transgenic plant’s gene expression and morphologic analysis were studied under cold, drought, and salt stress. Physiological parameters such as relative leaf water content, excised leaf water loss, chlorophyll content, and ion leakage showed that overexpressed plants possess more stable content under stress conditions compared with the WT plants. Furthermore, GhMPK3 overexpressed plants had greater antioxidant activities and weaker oxidant activities. Silencing GhMPK3 in cotton inhibited its tolerance to drought stress. Our research findings strongly suggest that GhMPK3 can be regarded as an essential gene for abiotic stress tolerance in cotton plants.


2021 ◽  
Vol 12 ◽  
Author(s):  
Dongbin Chen ◽  
Junhua Li ◽  
Fuchao Jiao ◽  
Qianqian Wang ◽  
Jun Li ◽  
...  

Aminoacylase-1 is a zinc-binding enzyme that is important in urea cycling, ammonia scavenging, and oxidative stress responses in animals. Aminoacylase-1 (ACY-1) has been reported to play a role in resistance to pathogen infection in the model plant Nicotiana benthamiana. However, little is known about its function in plant growth and abiotic stress responses. In this study, we cloned and analyzed expression patterns of ZmACY-1 in Zea mays under different conditions. We also functionally characterized ZmACY-1 in N. benthamiana. We found that ZmACY-1 is expressed specifically in mature shoots compared with other tissues. ZmACY-1 is repressed by salt, drought, jasmonic acid, and salicylic acid, but is induced by abscisic acid and ethylene, indicating a potential role in stress responses and plant growth. The overexpression of ZmACY-1 in N. benthamiana promoted growth rate by promoting growth-related genes, such as NbEXPA1 and NbEIN2. At the same time, the overexpression of ZmACY-1 in N. benthamiana reduced tolerance to drought and salt stress. With drought and salt stress, the activity of protective enzymes, such as peroxidase (POD), superoxide dismutase (SOD), and catalase (CAT) from micrococcus lysodeikticus was lower; while the content of malondialdehyde (MDA) and relative electrolytic leakage was higher in ZmACY-1 overexpression lines than that in wild-type lines. The results indicate that ZmACY-1 plays an important role in the balance of plant growth and defense and can be used to assist plant breeding under abiotic stress conditions.


Rice ◽  
2020 ◽  
Vol 13 (1) ◽  
Author(s):  
Xiang Zhang ◽  
Yan Long ◽  
Jingjing Huang ◽  
Jixing Xia

Abstract Background Salt stress threatens crop yields all over the world. Many NAC transcription factors have been reported to be involved in different abiotic stress responses, but it remains unclear how loss of these transcription factors alters the transcriptomes of plants. Previous reports have demonstrated that overexpression of OsNAC45 enhances salt and drought tolerance in rice, and that OsNAC45 may regulate the expression of two specific genes, OsPM1 and OsLEA3–1. Results Here, we found that ABA repressed, and NaCl promoted, the expression of OsNAC45 in roots. Immunostaining showed that OsNAC45 was localized in all root cells and was mainly expressed in the stele. Loss of OsNAC45 decreased the sensitivity of rice plants to ABA and over-expressing this gene had the opposite effect, which demonstrated that OsNAC45 played an important role during ABA signal responses. Knockout of OsNAC45 also resulted in more ROS accumulation in roots and increased sensitivity of rice to salt stress. Transcriptome sequencing assay found that thousands of genes were differently expressed in OsNAC45-knockout plants. Most of the down-regulated genes participated in plant stress responses. Quantitative real time RT-PCR suggested that seven genes may be regulated by OsNAC45 including OsCYP89G1, OsDREB1F, OsEREBP2, OsERF104, OsPM1, OsSAMDC2, and OsSIK1. Conclusions These results indicate that OsNAC45 plays vital roles in ABA signal responses and salt tolerance in rice. Further characterization of this gene may help us understand ABA signal pathway and breed rice plants that are more tolerant to salt stress.


Sign in / Sign up

Export Citation Format

Share Document