scholarly journals Endogenous cycles, activity patterns and energy expenditure of an intertidal fish is modified by artificial light pollution at night (ALAN)

2019 ◽  
Vol 244 ◽  
pp. 361-366 ◽  
Author(s):  
José Pulgar ◽  
Danae Zeballos ◽  
Juan Vargas ◽  
Marcela Aldana ◽  
Patricio H. Manriquez ◽  
...  
Author(s):  
Jake M Robinson ◽  
Ross Cameron ◽  
Brenda Parker

Globally, anthropogenic sound and artificial light pollution have increased to alarming levels. Evidence suggests that these can disrupt critical processes that impact ecosystems and human health. However, limited focus has been given to the potential effects of sound and artificial light pollution on microbiomes. Microbial communities are the foundations of our ecosystems. They are essential for human health and provide myriad ecosystem services. Therefore, disruption to microbiomes by anthropogenic sound and artificial light could have important ecological and human health implications. In this mini-review, we provide a critical appraisal of available scientific literature on the effects of anthropogenic sound and light exposure on microorganisms and discuss the potential ecological and human health implications. Our mini-review shows that a limited number of studies have been carried out to investigate the effects of anthropogenic sound and light pollution on microbiomes. However, based on these studies, it is evident that anthropogenic sound and light pollution have the potential to significantly influence ecosystems and human health via microbial interactions. Many of the studies suffered from modest sample sizes, suboptimal experiments designs, and some of the bioinformatics approaches used are now outdated. These factors should be improved in future studies. This is an emerging and severely underexplored area of research that could have important implications for global ecosystems and public health. Finally, we also propose the photo-sonic restoration hypothesis: does restoring natural levels of light and sound help to restore microbiomes and ecosystem stability?


2021 ◽  
Vol 9 ◽  
Author(s):  
Wouter Halfwerk ◽  
Paul Jerem

Levels of anthropogenic noise and artificial light at night (ALAN) are rapidly rising on a global scale. Both sensory pollutants are well known to affect animal behavior and physiology, which can lead to substantial ecological impacts. Most studies on noise or light pollution to date have focused on single stressor impacts, studying both pollutants in isolation despite their high spatial and temporal co-occurrence. However, few studies have addressed their combined impact, known as multisensory pollution, with the specific aim to assess whether the interaction between noise and light pollution leads to predictable, additive effects, or less predictable, synergistic or antagonistic effects. We carried out a systematic review of research investigating multisensory pollution and found 28 studies that simultaneously assessed the impact of anthropogenic noise and ALAN on animal function (e.g., behavior, morphology or life-history), physiology (e.g., stress, oxidative, or immune status), or population demography (e.g., abundance or species richness). Only fifteen of these studies specifically tested for possible interactive effects when both sensory pollutants were combined. Four out of eight experimental studies revealed a significant interaction effect, in contrast to only three out seven observational studies. We discuss the benefits and limitations of experimental vs. observational studies addressing multisensory pollution and call for more specific testing of the diverse ways in which noise and light pollution can interact to affect wildlife.


Author(s):  
Matthew N. Goodell ◽  
Takara E. Truong ◽  
Stephanie R. Marston ◽  
Brett J. Smiley ◽  
Elliot R. Befus ◽  
...  

Abstract The improper use of artificial light causing skyglow is detrimental to many types of wildlife and can potentially cause irregular human sleeping patterns. Studies have been performed to analyze light pollution on a global scale. However, light pollution data on a local scale is not of ten available and the effects at local scale have rarely been studied. Herein, a new custom-designed autonomous light assessment drone (ALAD) is described for evaluating light pollution at local scale. The ALAD is designed and equipped with a sky quality meter (SQM) to measure skyglow and a low-cost illuminance sensor to measure light from artificial sources. Outdoor field tests are performed at a remote site in central Utah and the measured results are validated against data from lightpollution-map.info. The SQM measurements are in agreement with the estimates from the light pollution map, and the initial results demonstrate feasibility of the ALAD for local-scale skyglow assessment.


2019 ◽  
Vol 491 (4) ◽  
pp. 5586-5594
Author(s):  
Miroslav Kocifaj ◽  
František Kundracik ◽  
Ondrej Bilý

ABSTRACT The emission spectrum of a light-pollution source is a determining factor for modelling artificial light at night. The spectral composition of skyglow is normally derived from the initial spectra of all artificial light sources contributing to the diffuse illumination of an observation point. However, light scattering in the ambient atmosphere imposes a wavelength-specific distortion on the optical signals captured by the measuring device. The nature of the emission, the spectra and the light-scattering phenomena not only control the spectral properties of the ground-reaching radiation, but also provide a unique tool for remote diagnosis and even identification of the emission spectra of the light-polluting sources. This is because the information contained in the night-sky brightness is preferably measured in directions towards a glowing dome of light over the artificial source of light. We have developed a new method for obtaining the emission spectra using remote terrestrial sensing of the bright patches of sky associated with a source. Field experiments conducted in Vienna and Bratislava have been used to validate the theoretical model and the retrieval method. These experiments demonstrate that the numerical inversion is successful even if the signal-to-noise ratio is small. The method for decoding the emission spectra by the light-scattering spectrometry of a night sky is a unique approach that enables for (i) a systematic characterization of the light-pollution sources over a specific territory, and (ii) a significant improvement in the numerical prediction of skyglow changes that we can expect at observatories.


2013 ◽  
Vol 19 (5) ◽  
pp. 1417-1423 ◽  
Author(s):  
Thomas W. Davies ◽  
Jonathan Bennie ◽  
Richard Inger ◽  
Natalie Hempel Ibarra ◽  
Kevin J. Gaston

The Condor ◽  
2020 ◽  
Vol 122 (2) ◽  
Author(s):  
Xuebing Zhao ◽  
Min Zhang ◽  
Xianli Che ◽  
Fasheng Zou

Abstract Light pollution is increasing and artificial light sources have great impacts on animals. For migrating birds, collisions caused by artificial light pollution are a significant source of mortality. Laboratory studies have demonstrated that birds have different visual sensitivities to different colors of light, but few field experiments have compared birds’ responses to light of different wavelengths. We used 3 monochromatic lights (red, green, and blue) and polychromatic yellow light to study the impact of wavelength on phototaxis at 2 gathering sites of nocturnally migrating birds in Southwest China. For both sites, short-wavelength blue light caused the strongest phototactic response. In contrast, birds were rarely attracted to long-wavelength red light. The attractive effect of blue light was greatest during nights with fog and headwinds. As rapid urbanization and industrialization cause an increase in artificial light, we suggest that switching to longer wavelength lights is a convenient and economically effective way to reduce bird collisions.


2020 ◽  
Vol 12 (20) ◽  
pp. 3412
Author(s):  
Andreas Jechow ◽  
Franz Hölker

Artificial skyglow, the brightening of the night sky by artificial light at night that is scattered back to Earth within the atmosphere, is detrimental to astronomical observations and has an impact on ecosystems as a form of light pollution. In this work, we investigated the impact of the lockdown caused by the COVID-19 pandemic on the urban skyglow of Berlin, Germany. We compared night sky brightness and correlated color temperature (CCT) measurements obtained with all-sky cameras during the COVID-19 lockdown in March 2020 with data from March 2017. Under normal conditions, we expected an increase in night sky brightness (or skyglow, respectively) and CCT because of the transition to LED. This is supported by a measured CCT shift to slightly higher values and a time series analysis of night-time light satellite data showing an increase in artificial light emission in Berlin. However, contrary to this observation, we measured a decrease in artificial skyglow at zenith by 20% at the city center and by more than 50% at 58 km distance from the center during the lockdown. We assume that the main cause for the reduction of artificial skyglow originates from improved air quality due to less air and road traffic, which is supported by statistical data and satellite image analysis. To our knowledge, this is the first reported impact of COVID-19 on artificial skyglow and we conclude that air pollution should shift more into the focus of light pollution research.


Nutrients ◽  
2019 ◽  
Vol 11 (5) ◽  
pp. 1192 ◽  
Author(s):  
Nader Lessan ◽  
Tomader Ali

Intermittent fasting (IF) has been gaining popularity as a means of losing weight. The Ramadan fast (RF) is a form of IF practiced by millions of adult Muslims globally for a whole lunar month every year. It entails a major shift from normal eating patterns to exclusive nocturnal eating. RF is a state of intermittent liver glycogen depletion and repletion. The earlier (morning) part of the fasting day is marked by dominance of carbohydrate as the main fuel, but lipid becomes more important towards the afternoon and as the time for breaking the fast at sunset (iftar) gets closer. The practice of observing Ramadan fasting is accompanied by changes in sleeping and activity patterns, as well as circadian rhythms of hormones including cortisol, insulin, leptin, ghrelin, growth hormone, prolactin, sex hormones, and adiponectin. Few studies have investigated energy expenditure in the context of RF including resting metabolic rate (RMR) and total energy expenditure (TEE) and found no significant changes with RF. Changes in activity and sleeping patterns however do occur and are different from non-Ramadan days. Weight changes in the context of Ramadan fast are variable and typically modest with wise inter-individual variation. As well as its direct relevance to many religious observers, understanding intermittent fasting may have implications on weight loss strategies with even broader potential implications. This review examines current knowledge on different aspects of energy balance in RF, as a common model to learn from and also map out strategies for healthier outcomes in such settings.


Sign in / Sign up

Export Citation Format

Share Document