Immunotoxic mechanisms of cigarette smoke and heat-not-burn tobacco vapor on Jurkat T cell functions

2021 ◽  
Vol 268 ◽  
pp. 115863
Author(s):  
Pablo Scharf ◽  
Gustavo H.O. da Rocha ◽  
Silvana Sandri ◽  
Cintia S. Heluany ◽  
Walter R. Pedreira Filho ◽  
...  
2020 ◽  
Vol 8 (Suppl 3) ◽  
pp. A202-A202
Author(s):  
Swati Jalgaonkar ◽  
George Huang ◽  
Erin Filbert ◽  
Christine Tan ◽  
Ryan Alvarado ◽  
...  

BackgroundTherapeutically targeting tumor myeloid cells has emerged as a novel and complementary strategy to existing cancer immunotherapy approaches. The interaction of tumor expressed CD47 with SIRP alpha (signal regulatory protein-alphaa, SIRPA) on macrophages, dendritic cells and neutrophils inhibits key immune effector mechanisms. Targeting SIRPa-CD47 represents a novel approach to enhance anti-tumor immunity by augmenting or reactivating critical tumor clearance mechanisms.H5F9, an antibody against CD47, has shown promising therapeutic activities in patients with MSD, AML and NHL. However, agents targeting CD47 present hematological toxicities and present a huge antigen sink leading to not achieving an optimum therapeutic window. Our approach is to target SIRP alpha, the receptor of CD47 and focus therapeutic targeting to relevant mechanisms related to phagocytosis and myeloid cell activation and at the same time avoid undesired effects of blocking CD47. SIRP gamma, a very close relative of SIRP alpha is expressed on T cells and also binds to CD47. It has been shown that blockade of SIRP gamma-CD47 interaction inhibits T cell proliferation and blocks trans-endothelial T cell migration. Hence, our aim is to generate SIRP alpha selective antibodies that do not cross-react with SIRP gamma and have minimal impact on T cell functions.MethodsUsing Apexigen’s APXiMAB™ proprietary antibody discovery platform, we have generated two novel anti-SIRP alpha antibodies (APX701 & APX702) with differentiated properties as compared to other approaches targeting the CD47/SIRP alpha axis. We have used ELISA, FACS based cell binding and blocking assays, and functional assays including in vitro phagocytosis and antibody-dependent cell phagocytosis (ADCP) in combination with tumor-opsonizing antibody to select APX701 & APX702.ResultsOur novel preclinical-stage APX701 & APX702 antibodies have demonstrated the following attributes: high binding affinity to human SIRP alpha (APX701 Kd = 0.95nM, APX702 Kd = 0.88nM), no binding to SIRP gamma, efficient blockade of SIRP alpha binding to CD47(APX701 IC50 = 1.04nM, APX702 IC50 = 0.80nM), potent macrophage mediated phagocytosis, enhancement of ADCP mediated by tumor-opsonizing antibody and favorable developability CMC profiles. In comparison with the benchmark antibody OSE-172, APX701 & APX702 showed potent phagocytosis activity and ADCP enhancement in all donors tested while OSE-172 induced phagocytosis in only 50% of the donors. This may result from the fact that APX701 and APX702 bind to all major SIRP alpha variants (V1, V2 & V8; covering ~92% population) while OSE 172 only binds to SIRPalpha V1 (~50% population).ConclusionsAPX701 and APX702 demonstrate differentiated anti-SIRPalpha activities by enhancing myeloid cell-mediated anti-tumor immunity and reactivating critical tumor clearance mechanisms within the tumor microenvironment.


2021 ◽  
Vol 22 (5) ◽  
pp. 2476
Author(s):  
Kento Fujiwara ◽  
Masaki Kitaura ◽  
Ayaka Tsunei ◽  
Hotaka Kusabuka ◽  
Erika Ogaki ◽  
...  

T cells that are genetically engineered to express chimeric antigen receptor (CAR) have a strong potential to eliminate tumor cells, yet the CAR-T cells may also induce severe side effects due to an excessive immune response. Although optimization of the CAR structure is expected to improve the efficacy and toxicity of CAR-T cells, the relationship between CAR structure and CAR-T cell functions remains unclear. Here, we constructed second-generation CARs incorporating a signal transduction domain (STD) derived from CD3ζ and a 2nd STD derived from CD28, CD278, CD27, CD134, or CD137, and investigated the impact of the STD structure and signaling on CAR-T cell functions. Cytokine secretion of CAR-T cells was enhanced by 2nd STD signaling. T cells expressing CAR with CD278-STD or CD137-STD proliferated in an antigen-independent manner by their STD tonic signaling. CAR-T cells incorporating CD28-STD or CD278-STD between TMD and CD3ζ-STD showed higher cytotoxicity than first-generation CAR or second-generation CARs with other 2nd STDs. The potent cytotoxicity of these CAR-T cells was not affected by inhibiting the 2nd STD signals, but was eliminated by placing the STDs after the CD3ζ-STD. Our data highlighted that CAR activity was affected by STD structure as well as by 2nd STD signaling.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Ombretta Annibali ◽  
Antonella Bianchi ◽  
Alba Grifoni ◽  
Valeria Tomarchio ◽  
Mariantonietta Tafuri ◽  
...  

AbstractClinical use of immune-checkpoints inhibitors (anti PD-1/PD-L1) resulted very effective for the treatment of relapsed/refractory classic Hodgkin Lymphoma (CHL). Recently, T cell Ig and ITIM domains (TIGIT) has been recognized as an immune checkpoint receptor able to negatively regulate T cell functions. Herein, we investigated the expression of TIGIT in CHL microenvironment in order to find a potential new target for inhibitor therapy. TIGIT, PD-1 and PD-L1 expression was evaluated in 34 consecutive patients with CHL. TIGIT expression in T lymphocytes surrounding Hodgkin Reed-Sternberg (HRS) cells was observed in 19/34 patients (56%), of which 11 (58%) had advanced stages. In 16/19 (84%) cases, TIGIT+ peritumoral T lymphocytes showed also PD-1 expression. All 15 TIGIT− patients had PD-L1 expression in HRS cells (100%) while among 19 TIGIT+ patients, 11 (58%) were PD-L1+ and 8 (42%) were PD-L1−. Using a new scoring system for TIGIT immunoreactivity, all TIGIT+ cases with higher score (4/19) were PD-L1−. Our results confirm co-expression of TIGIT and PD-1 in peritumoral T lymphocytes. Of relevance, we demonstrated a mutually exclusive expression of TIGIT and PD-L1 using new TIGIT scoring system able to identify this immunocheckpoints’ modulation. These results pave the way to new therapeutic strategies for relapsed/refractory CHL.


2021 ◽  
Vol 147 (2) ◽  
pp. AB3
Author(s):  
Vivek Gandhi ◽  
Jacqueline Cephus ◽  
Nowrin Chowdhury ◽  
Allison Norlander ◽  
Stokes Peebles ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document