scholarly journals TIME to Change: Rethinking Humanitarian Energy Access

2022 ◽  
Vol 86 ◽  
pp. 102453
Benjamin L. Robinson ◽  
Mike J. Clifford ◽  
Sarah Jewitt
Molla Asmare ◽  
Mustafa Ilbas

Nowadays, the most decisive challenges we are fronting are perfectly clean energy making for equitable and sustainable modern energy access, and battling the emerging alteration of the climate. This is because, carbon-rich fuels are the fundamental supply of utilized energy for strengthening human society, and it will be sustained in the near future. In connection with this, electrochemical technologies are an emerging and domineering tool for efficiently transforming the existing scarce fossil fuels and renewable energy sources into electric power with a trivial environmental impact. Compared with conventional power generation technologies, SOFC that operate at high temperature is emerging as a frontrunner to convert the fuels chemical energy into electric power and permits the deployment of varieties of fuels with negligible ecological destructions. According to this critical review, direct ammonia is obtained as a primary possible choice and price-effective green fuel for T-SOFCs. This is because T-SOFCs have higher volumetric power density, mechanically stable, and high thermal shocking resistance. Also, there is no sealing issue problem which is the chronic issues of the planar one. As a result, the toxicity of ammonia to use as a fuel is minimized if there may be a leakage during operation. It is portable and manageable that can be work everywhere when there is energy demand. Besides, manufacturing, onboard hydrogen deposition, and transportation infrastructure connected snags of hydrogen will be solved using ammonia. Ammonia is a low-priced carbon-neutral source of energy and has more stored volumetric energy compared with hydrogen. Yet, to utilize direct NH3 as a means of hydrogen carrier and an alternative green fuel in T-SOFCs practically determining the optimum operating temperatures, reactant flow rates, electrode porosities, pressure, the position of the anode, thickness and diameters of the tube are still requiring further improvement. Therefore, mathematical modeling ought to be developed to determine these parameters before planning for experimental work. Also, a performance comparison of AS, ES, and CS- T-SOFC powered with direct NH3 will be investigated and best-performed support will be carefully chosen for practical implementation and an experimental study will be conducted for verification based on optimum parameter values obtained from numerical modeling.

2016 ◽  
Abhishek Jain ◽  
Johannes Urpelainen ◽  
Lucy Stevens

Professor Adebambo Adewopo ◽  
Dr Tobias Schonwetter ◽  
Helen Chuma-Okoro

This chapter examines the proper role of intellectual property rights (IPRs) in achieving access to modern energy services in Africa as part of a broader objective of a pro-development intellectual property agenda for African countries. It discusses the role of intellectual property rights, particularly patents, in consonance with pertinent development questions in Africa connected with the implementation of intellectual property standards, which do not wholly assume that innovation in Africa is dependent on strong intellectual property systems. The chapter examines how existing intellectual property legal landscapes in Africa enhance or impede access to modern energy, and how the law can be directed towards improved energy access in African countries. While suggesting that IPRs could serve an important role in achieving modern energy access, the chapter calls for circumspection in applying IP laws in order not to inhibit access to useful technologies for achieving access to modern energy services.

Peter Kayode Oniemola ◽  
Jane Ezirigwe

To achieve universal energy access will attract huge capital investments. If sub-Saharan Africa is to realize anything close to the ambitious goals set for its energy access, then new actors, innovative funding mechanisms and sustainable technologies will have to be attracted. Finance is needed for activities such as rural electrification, clean cooking facilities, diesel motors and generators, other renewable energy technologies, oil and gas infrastructures, etc. Finance is also needed in research and development of suitable technologies and funding options as well as investment in the capacity to formulate and implement sound energy policies. This chapter examines the varied financing options for energy access in sub-Saharan Africa. It argues that with appropriate laws in place and effective mechanism for implementation, African countries can significantly engage private sector financing, international financial institutions and foreign donors. The role of the law here will be in creating an enabling environment for financing.

Energies ◽  
2021 ◽  
Vol 14 (8) ◽  
pp. 2189
Cesare Caputo ◽  
Ondřej Mašek

Energy access and waste management are two of the most pressing developmental and environmental issues on a global level to help mitigate the accelerating impacts of climate change. They are particularly relevant in Sub–Saharan Africa where electrification rates are significantly below global averages and rural areas are lacking a formal waste management sector. This paper explores the potential of integrating solar energy into a biomass pyrolysis unit as a potentially synergetic solution to both issues. The full design of a slow pyrolysis batch reactor targeted at biochar production, following a strict cost minimization approach, is presented in light of the relevant considerations. SPEAR is powered using a Cassegrain optics parabolic dish system, integrated into the reactor via a manual tracking system and optically optimized with a Monte-Carlo ray tracing methodology. The design approach employed has led to the development an overall cost efficient system, with the potential to achieve optical efficiencies up 72% under a 1.5° tracking error. The outputs of the system are biochar and electricity, to be used for soil amendment and energy access purposes, respectively. There is potential to pyrolyze a number of agricultural waste streams for the region, producing at least 5 kg of biochar per unit per day depending on the feedstock employed. Financial assessment of SPEAR yields a positive Net Present Value (NPV) in nearly all scenarios evaluated and a reasonable competitiveness with small scale solar for electrification objectives. Finally, SPEAR presents important positive social and environmental externalities and should be feasibly implementable in the region in the near term.

2021 ◽  
Vol 13 (4) ◽  
pp. 2128
Amollo Ambole ◽  
Kweku Koranteng ◽  
Peris Njoroge ◽  
Douglas Logedi Luhangala

Energy communities have received considerable attention in the Global North, especially in Europe, due to their potential for achieving sustainable energy transitions. In Sub-Saharan Africa (SSA), energy communities have received less attention partly due to the nascent energy systems in many emerging SSA states. In this paper, we argue that these nascent energy systems offer an opportunity to co-create energy communities that can tackle the energy access challenges faced by most SSA countries. To understand how such energy communities are realised in the sub-region, we undertake a systematic review of research on energy communities in 46 SSA countries. Our findings show that only a few energy projects exhibit the conventional characteristics of energy communities; In most of these projects, local communities are inadequately resourced to institute and manage their own projects. We thus look to stakeholder engagement approaches to propose co-design as a strategy for strengthening energy communities in SSA. We further embed our co-design proposal in energy democracy thinking to argue that energy communities can be a pathway towards equity and energy justice in SSA. We conclude that energy communities can indeed contribute to improving energy access in Africa, but they need an enabling policy environment to foster their growth and sustainability.

Energies ◽  
2021 ◽  
Vol 14 (13) ◽  
pp. 3916
Kimball C. Chen ◽  
Matthew Leach ◽  
Mairi J. Black ◽  
Meron Tesfamichael ◽  
Francis Kemausuor ◽  

Energy supply for clean cooking is a priority for Sub-Saharan Africa (SSA). Liquefied petroleum gas (LPG, i.e., propane or butane or a mixture of both) is an economically efficient, cooking energy solution used by over 2.5 billion people worldwide and scaled up in numerous low- and middle-income countries (LMICs). Investigation of the technical, policy, economic and physical requirements of producing LPG from renewable feedstocks (bioLPG) finds feasibility at scale in Africa. Biogas and syngas from the circular economic repurposing of municipal solid waste and agricultural waste can be used in two groundbreaking new chemical processes (Cool LPG or Integrated Hydropyrolysis and Hydroconversion (IH2)) to selectively produce bioLPG. Evidence about the nature and scale potential of bioLPG presented in this study justifies further investment in the development of bioLPG as a fuel that can make a major contribution toward enabling an SSA green economy and universal energy access. Techno-economic assessments of five potential projects from Ghana, Kenya and Rwanda illustrate what might be possible. BioLPG technology is in the early days of development, so normal technology piloting and de-risking need to be undertaken. However, fully developed bioLPG production could greatly reduce the public and private sector investment required to significantly increase SSA clean cooking capacity.

2021 ◽  
Vol 34 (3) ◽  
pp. 106921
Tam Kemabonta ◽  
Daniel M. Kammen

Sign in / Sign up

Export Citation Format

Share Document