Fabrication of core-shell structured nanofibers of poly (lactic acid) and poly (vinyl alcohol) by coaxial electrospinning for tissue engineering

2018 ◽  
Vol 98 ◽  
pp. 483-491 ◽  
Author(s):  
Hamad F. Alharbi ◽  
Monis Luqman ◽  
Khalil Abdelrazek Khalil ◽  
Yasser A. Elnakady ◽  
Omar H. Abd-Elkader ◽  
...  
2021 ◽  
pp. 096739112110206
Author(s):  
Fika Fauzi ◽  
Muhammad Miqdam Musawwa ◽  
Habibi Hidayat ◽  
Ahmad Kusumaatmaja ◽  
Wipsar Sunu Brams Dwandaru

Recently, antibacterial coatings based on graphene oxide (GO) nanocomposites have attracted many studies around the world. The use of polymers as the matrices of GO nanofillers in the nanocomposites has been explored to produce efficient coatings against bacteria. One of the most prospective applications is the incorporation of GO into biocompatible polymers, which can produce antibacterial coatings. Here, recent progresses on the antibacterial coatings of nanocomposites based on biocompatible polymers and GO are reviewed. The effect of GO filler concentrations, biocide materials, and biocompatibility are discussed to find the most efficient antibacterial activity and biocompatibility of nanocomposites. Among biocompatible polymers, chitosan (Cs), poly vinyl alcohol (PVA), and poly lactic acid (PLA) are the most popular matrices used for the nanocomposites. This review also elaborates challenges in the use of other biocompatible polymers. Future works on biocompatible antibacterial coatings should be conducted by considering the concentration of GO nanofillers or adding other materials such as essential oils to suppress the toxicity toward functional cells.


2020 ◽  
Vol 35 (3) ◽  
pp. 189-202 ◽  
Author(s):  
Reyhaneh Fatahian ◽  
Mohammad Mirjalili ◽  
Ramin Khajavi ◽  
Mohammad Karim Rahimi ◽  
Navid Nasirizadeh

Today, an advanced wound dressing with the ability of blood clotting and antibacterial activity is the main subject of many studies to consider their necessity in modern society. In this study, it was aimed to present a novel scaffold with both abilities simultaneously. Poly(vinyl alcohol)/poly(lactic acid) nanofibrous scaffolds containing ceftriaxone antimicrobial agent (PVA-CTX/PLA) and tranexamic acid coagulant (PVA-CTX-TXA/PLA) were fabricated by electrospinning method. Morphology, antimicrobial activity, blood coagulation and bioavailability indexes, and swelling ability (gel formation) of produced samples were determined. Morphological results showed that the hybrid nanofibers were form successfully. The antibacterial efficiency of them against Gram-negative ( Escherichia coli) and Gram-positive ( Staphylococcus aureus) bacteria was more than 90% for PVA-CTX/PLA and it reached 100% for PVA-CTX-TXA/PLA. Both PVA-CTX-TXA/PLA and PVA-TXA/PLA scaffolds showed acceptable blood coagulation ability with an average absorption of 0.043 and 0.036 nm, respectively. PVA-CTX-TXA/PLA scaffolds had a gel formation ability of about 45 min. All scaffolds were successful in cell proliferation (L929 fibroblast cell) after 48 h.


2008 ◽  
Vol 47 (12) ◽  
pp. 1289-1296 ◽  
Author(s):  
Jen-Taut Yeh ◽  
Ming-Chien Yang ◽  
Ching-Ju Wu ◽  
Xiong Wu ◽  
Chin-San Wu

RSC Advances ◽  
2015 ◽  
Vol 5 (62) ◽  
pp. 50462-50469 ◽  
Author(s):  
Roqiye Najafi-Taher ◽  
Mohammad Ali Derakhshan ◽  
Reza Faridi-Majidi ◽  
Amir Amani

Core/shell l-ascorbic acid/poly(vinyl alcohol)–chitosan (ASC/PVA–CS) nanofibers were successfully prepared utilizing coaxial electrospinning and their characteristics were compared with monolithic blend PVA–CS–ASC nanofibers.


Sign in / Sign up

Export Citation Format

Share Document