Potential role of high serum leptin concentration in age-related decrease of fatty acid synthase gene expression in rat white adipose tissue

2004 ◽  
Vol 39 (1) ◽  
pp. 147-150 ◽  
Author(s):  
Anna Nogalska ◽  
Julian Swierczynski
2017 ◽  
Vol 2017 ◽  
pp. 1-9 ◽  
Author(s):  
Yuka Unno ◽  
Yoshinori Sato ◽  
Satoshi Nishida ◽  
Akiyo Nakano ◽  
Ryuichi Nakano ◽  
...  

Acinetobacter baumanniiis one of the most important nosocomial opportunistic pathogen worldwide. In addition, obesity has been associated with an increased risk of nosocomial infection, suggesting that there may be an association betweenA. baumanniiand white adipose tissue. However, the effects ofA. baumanniion adipocytes have not been well studied at the molecular level. Here, we investigated the potential role ofA. baumannii-derived lipopolysaccharides (LPS) as signaling molecules that affect adipocyte functionality. We tested the effect of increasing concentrations ofA. baumannii-derived LPS (10, 100, or 1000 ng/mL) on the 3T3-L1 adipocyte cell line. Exposure to LPS was found to increase the expression of several adipokines (e.g., MIP-2, MCP-1, TNF-α, IL-6, lipocalin-2, and FABP4) in 3T3-L1 adipocytes and significantly reduced the expression of leptin and adiponectin. The effects ofA. baumannii-derived LPS on MIP-2 expression were similar in comparison with that of LPS prepared fromPseudomonas aeruginosaandEscherichia coliin our cell culture-based system. This study suggests thatA. baumannii-derived LPS functions as a signaling molecule that impacts the inflammatory function of white adipose tissue on the level of gene expression.


2017 ◽  
Vol 313 (3) ◽  
pp. C295-C304 ◽  
Author(s):  
Steven M. Dragos ◽  
Karl F. Bergeron ◽  
Frédérik Desmarais ◽  
Katherine Suitor ◽  
David C. Wright ◽  
...  

White adipose tissue (WAT) has a critical role in lipid handling. Previous work demonstrated that SCD1 is an important regulator of WAT fatty acid (FA) composition; however, its influence on the various interconnected pathways influencing WAT lipid handling remains unclear. Our objective was to investigate the role of SCD1 on WAT lipid handling using Scd1 knockout (KO) mice and SCD1-inhibited 3T3-L1 adipocytes by measuring gene, protein, and metabolite markers related to FA reesterification, glyceroneogenesis, and lipolysis. Triacylglycerol (TAG) content was higher in inguinal WAT (iWAT) from KO mice compared with wild-type, but significantly lower in epididymal WAT (eWAT). The SCD1 desaturation index was decreased in both WAT depots in KO mice. FA reesterification, as measured with a NEFA:glycerol ratio, was reduced in both WAT depots in KO mice, as well as SCD1-inhibited 3T3-L1 adipocytes. Pck1, Atgl, and Hsl gene expression was reduced in both WAT depots of KO mice, while Pck2 and Pdk4 gene expression showed depot-specific regulation. Pck1, Atgl, and Hsl gene expression was reduced, and phosphoenolpyruvate carboxykinase protein content was ablated, in SCD1-inhibited adipocytes. Our data provide evidence that SCD1 has a broad impact on WAT lipid handling by altering TAG composition in a depot-specific manner, reducing FA reesterification, and regulating markers of lipolysis and glyceroneogenesis.


2012 ◽  
Vol 302 (5) ◽  
pp. R587-R597 ◽  
Author(s):  
Liam A. Finlay ◽  
Alex J. Michels ◽  
Judy A. Butler ◽  
Eric J. Smith ◽  
Jeffrey S. Monette ◽  
...  

To determine the effects of age and lipoic acid supplementation on hepatic gene expression, we fed young (3 mo) and old (24 mo) male Fischer 344 rats a diet with or without 0.2% (wt/wt) R-α-lipoic acid (LA) for 2 wk. Total RNA isolated from liver tissue was analyzed by Affymetrix microarray to examine changes in transcriptional profiles. Results showed elevated proinflammatory gene expression in the aging liver and evidence for increased immune cell activation and tissue remodeling, together representing 45% of the age-related transcriptome changes. In addition, age-related increases in transcripts of genes related to fatty acid, triglyceride, and cholesterol synthesis, including acetyl-CoA carboxylase-β (Acacb) and fatty acid synthase (Fasn), were observed. Supplementation of old animals with LA did not reverse the necroinflammatory phenotype but, intriguingly, altered the expression of genes governing circadian rhythm. Most notably, Arntl, Npas2, and Per changed in a coordinated manner with respect to rhythmic transcription. LA further caused a decrease in transcripts of several bile acid and lipid synthesis genes, including Acacb and Fasn, which are regulated by first-order clock transcription factors. Similar effects of LA supplementation on bile acid and lipid synthesis genes were observed in young animals. Transcript changes of lipid metabolism genes were corroborated by a decrease in FASN and ACC protein levels. We conclude that advanced age is associated with a necroinflammatory phenotype and increased lipid synthesis, while chronic LA supplementation influences hepatic genes associated with lipid and energy metabolism and circadian rhythm, regardless of age.


Author(s):  
Christina Pagiatakis ◽  
Elettra Musolino ◽  
Rosalba Gornati ◽  
Giovanni Bernardini ◽  
Roberto Papait

AbstractAging is an important risk factor for several human diseases such as cancer, cardiovascular disease and neurodegenerative disorders, resulting from a combination of genetic and environmental factors (e.g., diet, smoking, obesity and stress), which, at molecular level, cause changes in gene expression underlying the decline of physiological function. Epigenetics, which include mechanisms regulating gene expression independently of changes to DNA sequence, regulate gene expression by modulating the structure of chromatin or by regulating the binding of transcriptional machinery to DNA. Several studies showed that an impairment of epigenetic mechanisms promotes alteration of gene expression underlying several aging-related diseases. Alteration of these mechanisms is also linked with changes of gene expression that occurs during aging processes of different tissues. In this review, we will outline the potential role of epigenetics in the onset of two age-related pathologies, cancer and cardiovascular diseases.


2019 ◽  
Vol 152 (Supplement_1) ◽  
pp. S135-S136
Author(s):  
Erika Egal ◽  
Joao Scarini ◽  
Larissa Fernandes ◽  
Welligton Sabino ◽  
Reydson Souza ◽  
...  

Abstract Introduction The carcinoma ex pleomorphic adenoma (CXPA) arises from a pleomorphic adenoma (PA) and is supposed to gain lipogenesis and glycogenesis during its malignant transformation. Increased lipogenesis is a characteristic of cancer cells, consisting of increased fatty acid synthesis by the enzyme fatty acid synthase (FASN) and by the accumulation of cytoplasmic lipid droplets, which express adipophilin. The increase in glycolytic metabolism has been associated with the activity of glycolytic enzymes and glucose transporters (GLUTs), whose expression is induced by HIF-1 (inducing factor of hypoxia 1). Objectives To analyze the gene expression of FASN, adipophilin, HIF-1α, and GLUT-1 in PA and CXPA samples. Methodology Gene expression analysis of the FASN, adipophilin, HIF1-α, and GLUT-1 genes was performed by the real-time PCR (qPCR) method. Fourteen cases of PA and 14 cases of CXAP were evaluated. Results FASN, adipophilin, HIF-1α, and GLUT-1 were more expressed in CXAP than in AP, although there was no significant difference between levels of adipophilin expression in CXPA and PA. Conclusion Increased expression of FASN, HIF1-α, and GLUT-1 in CXAP may be associated with malignant transformation of PA, while additional studies are needed to understand the role of adipophilin in PA carcinogenesis. Moreover, this is the first study to investigate the role of these genes in the malignant transformation of PA.


BMC Biology ◽  
2019 ◽  
Vol 17 (1) ◽  
Author(s):  
Ziye Xu ◽  
Wenjing You ◽  
Yanbing Zhou ◽  
Wentao Chen ◽  
Yizhen Wang ◽  
...  

Abstract Background In mammals, cold exposure induces browning of white adipose tissue (WAT) and alters WAT gene expression and lipid metabolism to boost adaptive thermogenesis and maintain body temperature. Understanding the lipidomic and transcriptomic profiles of WAT upon cold exposure provides insights into the adaptive changes associated with this process. Results Here, we applied mass spectrometry and RNA sequencing (RNA-seq) to provide a comprehensive resource for describing the lipidomic or transcriptome profiles in cold-induced inguinal WAT (iWAT). We showed that short-term (3-day) cold exposure induces browning of iWAT, increases energy expenditure, and results in loss of body weight and fat mass. Lipidomic analysis shows that short-term cold exposure leads to dramatic changes of the overall composition of lipid classes WAT. Notably, cold exposure induces significant changes in the acyl-chain composition of triacylglycerols (TAGs), as well as the levels of glycerophospholipids and sphingolipids in iWAT. RNA-seq and qPCR analysis suggests that short-term cold exposure alters the expression of genes and pathways involved in fatty acid elongation, and the synthesis of TAGs, sphingolipids, and glycerophospholipids. Furthermore, the cold-induced lipid dynamics and gene expression pathways in iWAT are contrary to those previously observed in metabolic syndrome, neurodegenerative disorders, and aging, suggesting beneficial effects of cold-induced WAT browning on health and lifespan. Conclusion We described the significant alterations in the composition of glyphospholipids, glycerolipids, and sphingolipids and expression of genes involved in thermogenesis, fatty acid elongation, and fatty acid metabolism during the response of iWAT to short-term cold exposure. We also found that some changes in the levels of specific lipid species happening after cold treatment of iWAT are negatively correlated to metabolic diseases, including obesity and T2D.


Sign in / Sign up

Export Citation Format

Share Document