scholarly journals Epigenetics of aging and disease: a brief overview

Author(s):  
Christina Pagiatakis ◽  
Elettra Musolino ◽  
Rosalba Gornati ◽  
Giovanni Bernardini ◽  
Roberto Papait

AbstractAging is an important risk factor for several human diseases such as cancer, cardiovascular disease and neurodegenerative disorders, resulting from a combination of genetic and environmental factors (e.g., diet, smoking, obesity and stress), which, at molecular level, cause changes in gene expression underlying the decline of physiological function. Epigenetics, which include mechanisms regulating gene expression independently of changes to DNA sequence, regulate gene expression by modulating the structure of chromatin or by regulating the binding of transcriptional machinery to DNA. Several studies showed that an impairment of epigenetic mechanisms promotes alteration of gene expression underlying several aging-related diseases. Alteration of these mechanisms is also linked with changes of gene expression that occurs during aging processes of different tissues. In this review, we will outline the potential role of epigenetics in the onset of two age-related pathologies, cancer and cardiovascular diseases.

2017 ◽  
Vol 2017 ◽  
pp. 1-9 ◽  
Author(s):  
Yuka Unno ◽  
Yoshinori Sato ◽  
Satoshi Nishida ◽  
Akiyo Nakano ◽  
Ryuichi Nakano ◽  
...  

Acinetobacter baumanniiis one of the most important nosocomial opportunistic pathogen worldwide. In addition, obesity has been associated with an increased risk of nosocomial infection, suggesting that there may be an association betweenA. baumanniiand white adipose tissue. However, the effects ofA. baumanniion adipocytes have not been well studied at the molecular level. Here, we investigated the potential role ofA. baumannii-derived lipopolysaccharides (LPS) as signaling molecules that affect adipocyte functionality. We tested the effect of increasing concentrations ofA. baumannii-derived LPS (10, 100, or 1000 ng/mL) on the 3T3-L1 adipocyte cell line. Exposure to LPS was found to increase the expression of several adipokines (e.g., MIP-2, MCP-1, TNF-α, IL-6, lipocalin-2, and FABP4) in 3T3-L1 adipocytes and significantly reduced the expression of leptin and adiponectin. The effects ofA. baumannii-derived LPS on MIP-2 expression were similar in comparison with that of LPS prepared fromPseudomonas aeruginosaandEscherichia coliin our cell culture-based system. This study suggests thatA. baumannii-derived LPS functions as a signaling molecule that impacts the inflammatory function of white adipose tissue on the level of gene expression.


Author(s):  
Elisa M. Trucco ◽  
Gabriel L. Schlomer ◽  
Brian M. Hicks

Approximately 48–66% of the variation in alcohol use disorders is heritable. This chapter provides an overview of the genetic influences that contribute to alcohol use disorder within a developmental perspective. Namely, risk for problematic alcohol use is framed as a function of age-related changes in the relative contribution of genetic and environmental factors and an end state of developmental processes. This chapter discusses the role of development in the association between genes and the environment on risk for alcohol use disorder. Designs used to identify genetic factors relevant to problematic alcohol use are discussed. Studies examining developmental pathways to alcohol use disorder with a focus on endophenotypes and intermediate phenotypes are reviewed. Finally, areas for further investigation are offered.


Genome ◽  
2020 ◽  
pp. 1-11
Author(s):  
Bahar Patlar ◽  
Alberto Civetta

It has long been acknowledged that changes in the regulation of gene expression may account for major organismal differences. However, we still do not fully understand how changes in gene expression evolve and how do such changes influence organisms’ differences. We are even less aware of the impact such changes might have in restricting gene flow between species. Here, we focus on studies of gene expression and speciation in the Drosophila model. We review studies that have identified gene interactions in post-mating reproductive isolation and speciation, particularly those that modulate male gene expression. We also address studies that have experimentally manipulated changes in gene expression to test their effect in post-mating reproductive isolation. We highlight the need for a more in-depth analysis of the role of selection causing disrupted gene expression of such candidate genes in sterile/inviable hybrids. Moreover, we discuss the relevance to incorporate more routinely assays that simultaneously evaluate the potential effects of environmental factors and genetic background in modulating plastic responses in male genes and their potential role in speciation.


2021 ◽  
Vol 53 ◽  
pp. S661-S662
Author(s):  
S. Kumar ◽  
K. Gecse ◽  
D. Baksa ◽  
X. Gonda ◽  
G. Bagdy ◽  
...  

2012 ◽  
Vol 6 ◽  
pp. S11-S12
Author(s):  
B. Mattioli ◽  
C. De Salvo ◽  
L. Pastorelli ◽  
R.R. Garg ◽  
M. Campieri ◽  
...  

Author(s):  
Charlotte A.M. Cecil

The biopsychosocial (BPS) model of psychiatry has had a major impact on our modern conceptualization of mental illness as a complex, multi-determined phenomenon. Yet, interdisciplinary BPS work remains the exception, rather than the rule in psychiatry. It has been suggested that this may stem in part from a failure of the BPS model to clearly delineate the mechanisms through which biological, psychological, and social factors co-act in the development of mental illness. This chapter discusses how epigenetic processes that regulate gene expression, such as DNA methylation, are fast emerging as a candidate mechanism for BPS interactions, with potentially widespread implications for the way that psychiatric disorders are understood, assessed, and, perhaps in future, even treated.


Sign in / Sign up

Export Citation Format

Share Document