scholarly journals R-α-lipoic acid does not reverse hepatic inflammation of aging, but lowers lipid anabolism, while accentuating circadian rhythm transcript profiles

2012 ◽  
Vol 302 (5) ◽  
pp. R587-R597 ◽  
Author(s):  
Liam A. Finlay ◽  
Alex J. Michels ◽  
Judy A. Butler ◽  
Eric J. Smith ◽  
Jeffrey S. Monette ◽  
...  

To determine the effects of age and lipoic acid supplementation on hepatic gene expression, we fed young (3 mo) and old (24 mo) male Fischer 344 rats a diet with or without 0.2% (wt/wt) R-α-lipoic acid (LA) for 2 wk. Total RNA isolated from liver tissue was analyzed by Affymetrix microarray to examine changes in transcriptional profiles. Results showed elevated proinflammatory gene expression in the aging liver and evidence for increased immune cell activation and tissue remodeling, together representing 45% of the age-related transcriptome changes. In addition, age-related increases in transcripts of genes related to fatty acid, triglyceride, and cholesterol synthesis, including acetyl-CoA carboxylase-β (Acacb) and fatty acid synthase (Fasn), were observed. Supplementation of old animals with LA did not reverse the necroinflammatory phenotype but, intriguingly, altered the expression of genes governing circadian rhythm. Most notably, Arntl, Npas2, and Per changed in a coordinated manner with respect to rhythmic transcription. LA further caused a decrease in transcripts of several bile acid and lipid synthesis genes, including Acacb and Fasn, which are regulated by first-order clock transcription factors. Similar effects of LA supplementation on bile acid and lipid synthesis genes were observed in young animals. Transcript changes of lipid metabolism genes were corroborated by a decrease in FASN and ACC protein levels. We conclude that advanced age is associated with a necroinflammatory phenotype and increased lipid synthesis, while chronic LA supplementation influences hepatic genes associated with lipid and energy metabolism and circadian rhythm, regardless of age.

2019 ◽  
Vol 2019 ◽  
pp. 1-13 ◽  
Author(s):  
Aaron L. Slusher ◽  
Tiffany M. Zúñiga ◽  
Edmund O. Acevedo

Age-related elevations in proinflammatory cytokines, known as inflamm-aging, are associated with shorter immune cell telomere lengths. Purpose. This study examined the relationship of plasma PTX3 concentrations, a biomarker of appropriate immune function, with telomere length in 15 middle-aged (40-64 years) and 15 young adults (20-31 years). In addition, PBMCs were isolated from middle-aged and young adults to examine their capacity to express a key mechanistic component of telomere length maintenance, human telomerase reverse transcriptase (hTERT), following ex vivo cellular stimulation. Methods. Plasma PTX3 and inflammatory cytokines (i.e., IL-6, IL-10, TGF-β, and TNF-α), PBMC telomere lengths, and PBMC hTERT gene expression and inflammatory protein secretion following exposure to LPS, PTX3, and PTX3+LPS were measured. Results. Aging was accompanied by the accumulation of centrally located visceral adipose tissue, without changes in body weight and BMI, and alterations in the systemic inflammatory milieu (decreased plasma PTX3 and TGF-β; increased TNF-α (p≤0.050)). In addition, shorter telomere lengths in middle-aged compared to young adults (p=0.011) were negatively associated with age, body fat percentages, and plasma TNF-α (r=−0.404, p=0.027; r=−0.427, p=0.019; and r=−0.323, p=0.041, respectively). Finally, the capacity of PBMCs to increase hTERT gene expression following ex vivo stimulation was impaired in middle-aged compared to young adults (p=0.033) and negatively associated with telomere lengths (r=0.353, p=0.028). Conclusions. Proinflammation and the impaired hTERT gene expression capacity of PBMCs may contribute to age-related telomere attrition and disease.


2010 ◽  
Vol 6 (1) ◽  
pp. 63-69 ◽  
Author(s):  
Maria Notarnicola ◽  
Simona Pisanti ◽  
Valeria Tutino ◽  
Domenica Bocale ◽  
Maria Teresa Rotelli ◽  
...  

Author(s):  
Ahmed El-Sayed ◽  
Ahmed Ateya ◽  
Mohamed Hamed ◽  
Sherif Shoieb ◽  
Hussam Ibrahim ◽  
...  

Objective: To assess the mRNA level of acetyl CoA carboxylase alpha (ACACA), fatty acid synthase (FASN), and stearoyl-CoA desaturase (SCD) by means of real-time PCR in Barki sheep subjected to complete feed deprivation. Design: Controlled study. Animals: Seven healthy pregnant ewes. Procedures: Ewes were subjected to complete feed deprivation with ad libitum water for five consecutive days. Venous blood samples were collected from each ewe before (zero time) and on the fifth day post-deprivation of feed for measurement of the mRNA level of ACACA, FASN, and SCD and assessment of serum metabolic profile parameters. Results: On the fifth day post-fasting, the gene expression pattern of ACACA, FASN, SCD genes showed a significant (p < 0.05) down regulation in comparison with pre-deprivation of feed. There was a significant (p < 0.05) increase in the serum level of non-esterified fatty acids (NEFA), beta-hydroxyl buteric acid (BHBA), and triglycerides in pregnant ewes in the fifth day post-fasting in comparison with pre-deprivation of feed. On the other hand, there was a significant (p < 0.05) decrease in the level of glucose, cholesterol, and insulin in pregnant ewes in the fifth day post-fasting compared with pre-deprivation of feed. On histopathology, liver showed marked heptic steatosis in midzonal and periportal area, with formation of small fatty cysts in liver lobule. There was a positive correlation between leptin and insulin (r = 0.996; p < 0.01), BHB and leptin (r = 0.951; p < 0.05) and glucose and SCD (r = 1.0, p < 0.01). However, there was a negative correlation between FASN and NEFA (r = - 0.991; p < 0.05), FASN and leptin (r = -0.683; p < 0.05) and FASN and cholesterol (r = - 0.82; p < 0.05). Conclusion and clinical relevance: Pregnant Barki ewes can clinically tolerate complete feed deprivation for five days, with down regulation of ACACA, FASN, SCD genes and presence of marked metabolic changes. Therefore, metabolic monitoring is warranted to predict the early changes associated with feed deprivation under different stressful conditions.


2019 ◽  
Vol 3 (4) ◽  
pp. 531-540 ◽  
Author(s):  
Ronald McCord ◽  
Christopher R. Bolen ◽  
Hartmut Koeppen ◽  
Edward E. Kadel ◽  
Mikkel Z. Oestergaard ◽  
...  

Abstract Programmed death-ligand 1 (PD-L1) and its receptor, programmed cell death-1 (PD-1), are important negative regulators of immune cell activation. Therapeutically targeting PD-1/PD-L1 in diffuse large B-cell lymphoma (DLBCL) patients with a single agent has limited activity, meriting a deeper understanding of this complex biology and of available PD-L1 clinical assays. In this study, we leveraged 2 large de novo DLBCL phase 3 trials (GOYA and MAIN) to better understand the biologic and clinical relevance of PD-L1 in de novo DLBCL. PD-L1 was expressed on myeloid cells in 85% to 95% of DLBCL patients (depending on staining procedure), compared with 10% on tumor cells, and correlated with macrophage gene expression. PD-L1 did not identify high-risk patients in de novo DLBCL; it correlated with STAT3, macrophage gene expression, and improved outcomes among a subset of patients. These results may help identify immunologically distinct DLBCL subsets relevant for checkpoint blockade. GOYA and MAIN trials were registered at www.clinicaltrials.gov as #NCT01287741 and #NCT00486759, respectively.


Sign in / Sign up

Export Citation Format

Share Document