scholarly journals The hunt for sustainable biocontrol of oomycete plant pathogens, a case study of Phytophthora infestans

Author(s):  
Maryam Hashemi ◽  
Dania Tabet ◽  
Murilo Sandroni ◽  
Clara Benavent-Celma ◽  
Jenifer Seematti ◽  
...  
2020 ◽  
Vol 12 (3) ◽  
pp. 1188 ◽  
Author(s):  
Yahuza Lurwanu ◽  
Yan-Ping Wang ◽  
Waheed Abdul ◽  
Jiasui Zhan ◽  
Li-Na Yang

Fungicide is one of the main approaches used in agriculture to manage plant diseases for food production, but their effectiveness can be reduced due to the evolution of plant pathogens. Understanding the genetics and evolutionary processes responsible for the development of fungicide resistance is a key to food production and social sustainability. In this study, we used a common garden experiment to examine the source of genetic variation, natural selection, and temperature contributing to the development of azoxystrobin resistance in Phytophthora infestans and infer sustainable ways of plant disease management in future. We found that plasticity contributed to ~40% of phenotypic variation in azoxystrobin sensitivity while heritability accounted for 16%. Further analysis indicated that overall population differentiation in azoxystrobin sensitivity (QST) was significantly greater than the overall population differentiation in simple sequence repeat (SSR) marker (FST), and the P. infestans isolates demonstrated higher level of azoxystrobin sensitivity at the higher experimental temperature. These results suggest that changes in target gene expression, enzymatic activity, or metabolic rate of P. infestans play a more important role in the adaptation of the pathogen to azoxystrobin resistance than that of mutations in target genes. The development of azoxystrobin resistance in P. infestans is likely driven by diversifying selection for local adaptation, and elevated temperature associated with global warming in the future may increase the effectiveness of using azoxystrobin to manage P. infestans. The sustainable approaches for increasing disease control effectiveness and minimizing the erosion of the fungicide efficacy are proposed.


2003 ◽  
Vol 2 (6) ◽  
pp. 1376-1385 ◽  
Author(s):  
Kyoung Su Kim ◽  
Howard S. Judelson

ABSTRACT The oomycete genus Phytophthora includes many of the world's most destructive plant pathogens, which are generally disseminated by asexual sporangia. To identify factors relevant to the biology of these propagules, genes induced in sporangia of the potato late blight pathogen Phytophthora infestans were isolated using cDNA macroarrays. Of ∼1,900 genes known to be expressed in sporangia, 61 were up-regulated >5-fold in sporangia versus hyphae based on the arrays, including 17 that were induced> 100-fold. A subset were also activated by starvation and in a nonsporulating mutant. mRNAs of some genes declined in abundance after germination, while others persisted through the germinated zoospore cyst stage. Functions were predicted for about three-quarters of the genes, including potential regulators (protein kinases and phosphatases, transcription factors, and G-protein subunits), transporters, and metabolic enzymes. Predominant among the last were several dehydrogenases, especially a highly expressed sorbitol dehydrogenase that accounted for 3% of the mRNA. Sorbitol dehydrogenase activity also rose during sporulation and several stress treatments, paralleling the expression of the gene. Another interesting metabolic enzyme resembled creatine kinases, which previously were reported only in animals and trypanosomes. These results provide insight into the transcriptional and cellular processes occurring in sporangia and identify potential targets for crop protection strategies.


2003 ◽  
Vol 159 (1) ◽  
pp. 53-61 ◽  
Author(s):  
Thomas K. Mitchell ◽  
Michael R. Thon ◽  
Jun-Seop Jeong ◽  
Doug Brown ◽  
Jixin Deng ◽  
...  

Agronomy ◽  
2018 ◽  
Vol 8 (8) ◽  
pp. 152 ◽  
Author(s):  
Lewis Ziska ◽  
Bethany Bradley ◽  
Rebekah Wallace ◽  
Charles Bargeron ◽  
Joseph LaForest ◽  
...  

The challenge of maintaining sufficient food, feed, fiber, and forests, for a projected end of century population of between 9–10 billion in the context of a climate averaging 2–4 °C warmer, is a global imperative. However, climate change is likely to alter the geographic ranges and impacts for a variety of insect pests, plant pathogens, and weeds, and the consequences for managed systems, particularly agriculture, remain uncertain. That uncertainty is related, in part, to whether pest management practices (e.g., biological, chemical, cultural, etc.) can adapt to climate/CO2 induced changes in pest biology to minimize potential loss. The ongoing and projected changes in CO2, environment, managed plant systems, and pest interactions, necessitates an assessment of current management practices and, if warranted, development of viable alternative strategies to counter damage from invasive alien species and evolving native pest populations. We provide an overview of the interactions regarding pest biology and climate/CO2; assess these interactions currently using coffee as a case study; identify the potential vulnerabilities regarding future pest impacts; and discuss possible adaptive strategies, including early detection and rapid response via EDDMapS (Early Detection & Distribution Mapping System), and integrated pest management (IPM), as adaptive means to improve monitoring pest movements and minimizing biotic losses while improving the efficacy of pest control.


2015 ◽  
Vol 105 (6) ◽  
pp. 771-777 ◽  
Author(s):  
Yuee Tian ◽  
Junliang Yin ◽  
Jieping Sun ◽  
Hongmei Ma ◽  
Yunfang Ma ◽  
...  

As the causal agent of late blight on potato, Phytophthora infestans is one of the most destructive plant pathogens worldwide and widely known as the Irish potato famine pathogen. Understanding the genetic structure of P. infestans populations is important both for breeding and deployment of resistant varieties and for development of disease control strategies. Here, we investigate the population genetic structure of P. infestans in a potato germplasm nursery in northwestern China. In total, 279 isolates were recovered from 63 potato varieties or lines in 2010 and 2011, and were genotyped by mitochondrial DNA haplotypes and a set of nine simple-sequence repeat markers. Selected isolates were further examined for virulence on a set of differential lines containing each resistance (R) gene (R1 to R11). The overall P. infestans population was characterized as having a low level of genetic diversity and resistance to metalaxyl, and containing a high percentage of individuals that virulent to all 11 R genes. Both A1 and A2 mating types as well as self-fertile P. infestans isolates were present but there was no evidence of sexual reproduction. The low level of genetic differentiation in P. infestans populations is probably due to the action of relatively high levels of migration as supported by analysis of molecular variance (P < 0.01). Migration and asexual reproduction were the predominant mechanisms influencing the P. infestans population structure in the germplasm nursery. Therefore, it is important to ensure the production of pathogen-free potato seed tubers to aid sustainable production of potato in northwestern China.


2014 ◽  
Author(s):  
Angela Chaparro-Garcia ◽  
Simon Schwizer ◽  
Jan Sklenar ◽  
Kentaro Yoshida ◽  
Jorunn I. B. Bos ◽  
...  

Perception of pathogen associated molecular patterns (PAMPs) by cell surface localized pattern recognition receptors (PPRs), activates plant basal defense responses in a process known as PAMP/PRR–triggered immunity (PTI). In turn, pathogens deploy effector proteins that interfere with different steps in PTI signaling. However, our knowledge of PTI suppression by filamentous plant pathogens, i.e. fungi and oomycetes, remains fragmentary. Previous work revealed that BAK1/SERK3, a regulatory receptor of several PRRs, contributes to basal immunity against the Irish potato famine pathogen Phytophthora infestans. Moreover BAK1/SERK3 is required for the cell death induced by P. infestans elicitin INF1, a protein with characteristics of PAMPs. The P. infestans host-translocated RXLR-WY effector AVR3a is known to supress INF1-mediated defense by binding the E3 ligase CMPG1. In contrast, AVR3aKI-Y147del, a deletion mutant of the C-terminal tyrosine of AVR3a, fails to bind CMPG1 and suppress INF1 cell death. Here we studied the extent to which AVR3a and its variants perturb additional BAK1/SERK3 dependent PTI responses using the plant PRR FLAGELLIN SENSING 2 (FLS2). We found that all tested variants of AVR3a, including AVR3aKI-Y147del, suppress early defense responses triggered by the bacterial flagellin-derived peptide flg22 and reduce internalization of activated FLS2 from the plasma membrane without disturbing its nonactivated localization. Consistent with this effect of AVR3a on FLS2 endocytosis, we discovered that AVR3a associates with the Dynamin-Related Protein DRP2, a plant GTPase implicated in receptor-mediated endocytosis. Interestingly, DRP2 is required for ligand-induced FLS2 internalization but does not affect internalization of the growth receptor BRASSINOSTEROID INSENSITIVE 1 (BRI1). Furthermore, overexpression of DRP2 suppressed accumulation of reactive oxygen species triggered by PAMP treatment. We conclude that AVR3a associates with a key cellular trafficking and membrane-remodeling complex involved in immune receptor-mediated endocytosis and signaling. AVR3a is a multifunctional effector that can suppress BAK1/SERK3 mediated immunity through at least two different pathways.


BMC Genomics ◽  
2021 ◽  
Vol 22 (1) ◽  
Author(s):  
David A. Ayala-Usma ◽  
Martha Cárdenas ◽  
Romain Guyot ◽  
Maryam Chaib De Mares ◽  
Adriana Bernal ◽  
...  

Abstract Background Pathogens of the genus Phytophthora are the etiological agents of many devastating diseases in several high-value crops and forestry species such as potato, tomato, cocoa, and oak, among many others. Phytophthora betacei is a recently described species that causes late blight almost exclusively in tree tomatoes, and it is closely related to Phytophthora infestans that causes the disease in potato crops and other Solanaceae. This study reports the assembly and annotation of the genomes of P. betacei P8084, the first of its species, and P. infestans RC1-10, a Colombian strain from the EC-1 lineage, using long-read SMRT sequencing technology. Results Our results show that P. betacei has the largest sequenced genome size of the Phytophthora genus so far with 270 Mb. A moderate transposable element invasion and a whole genome duplication likely explain its genome size expansion when compared to P. infestans, whereas P. infestans RC1-10 has expanded its genome under the activity of transposable elements. The high diversity and abundance (in terms of copy number) of classified and unclassified transposable elements in P. infestans RC1-10 relative to P. betacei bears testimony of the power of long-read technologies to discover novel repetitive elements in the genomes of organisms. Our data also provides support for the phylogenetic placement of P. betacei as a standalone species and as a sister group of P. infestans. Finally, we found no evidence to support the idea that the genome of P. betacei P8084 follows the same gene-dense/gense-sparse architecture proposed for P. infestans and other filamentous plant pathogens. Conclusions This study provides the first genome-wide picture of P. betacei and expands the genomic resources available for P. infestans. This is a contribution towards the understanding of the genome biology and evolutionary history of Phytophthora species belonging to the subclade 1c.


2018 ◽  
Vol 29 (1) ◽  
pp. 38
Author(s):  
ADEL HAMDAN ALWAN

This study was conducted to investigate the effect of two types of Ricinus communis plant tissue culture extract on two fungal plant pathogens Phytophthora infestans and Fusarium solani. The result showed detected several secondary metabolites component from the plant extracts like Flavonoid, Saponins, Tannins and Glycosides; and the high effect of the alcoholic extract of the plant on the fungi with 91.10% and 89.90% respectively, the percentages of inhibition are significantly increased by increasing the concentration of the extract.


Sign in / Sign up

Export Citation Format

Share Document