Presence of aiiA homologue genes encoding for N-Acyl homoserine lactone-degrading enzyme in aflatoxin B1-decontaminating Bacillus strains with potential use as feed additives

2019 ◽  
Vol 124 ◽  
pp. 316-323 ◽  
Author(s):  
M.L. González Pereyra ◽  
M.P. Martínez ◽  
L.R. Cavaglieri
Toxins ◽  
2018 ◽  
Vol 10 (11) ◽  
pp. 442 ◽  
Author(s):  
Isaura Caceres ◽  
Selma Snini ◽  
Olivier Puel ◽  
Florence Mathieu

Crop contamination by aflatoxin B1 is a current problem in tropical and subtropical regions. In the future, this contamination risk may be expanded to European countries due to climate change. The development of alternative strategies to prevent mycotoxin contamination that further contribute to the substitution of phytopharmaceutical products are thus needed. For this, a promising method resides in the use of biocontrol agents. Several actinobacteria strains have demonstrated to effectively reduce the aflatoxin B1 concentration. Nevertheless, the molecular mechanism of action by which these biological agents reduce the mycotoxin concentration has not been determined. The aim of the present study was to test the potential use of Streptomyces roseolus as a biocontrol agent against aflatoxin B1 contamination. Co-cultures with Aspergillus flavus were conducted, and the molecular fungal response was investigated through analyzing the q-PCR expression of 65 genes encoding relevant fungal functions. Moreover, kojic and cyclopiazonic acid concentrations, as well as morphological fungal changes were also analyzed. The results demonstrated that reduced concentrations of aflatoxin B1 and kojic acid were respectively correlated with the down-regulation of the aflatoxin B1 gene cluster and kojR gene expression. Moreover, a fungal hypersporulated phenotype and a general over-expression of genes involved in fungal development were observed in the co-culture condition.


2015 ◽  
Vol 81 (17) ◽  
pp. 5917-5926 ◽  
Author(s):  
Brett L. Mellbye ◽  
Peter J. Bottomley ◽  
Luis A. Sayavedra-Soto

ABSTRACTNitrobacter winogradskyiis a chemolithotrophic bacterium that plays a role in the nitrogen cycle by oxidizing nitrite to nitrate. Here, we demonstrate a functionalN-acyl-homoserine lactone (acyl-HSL) synthase in this bacterium. TheN. winogradskyigenome contains genes encoding a putative acyl-HSL autoinducer synthase (nwi0626,nwiI) and a putative acyl-HSL autoinducer receptor (nwi0627,nwiR) with amino acid sequences 38 to 78% identical to those inRhodopseudomonas palustrisand otherRhizobiales. Expression ofnwiIandnwiRcorrelated with acyl-HSL production during culture.N. winogradskyiproduces two distinct acyl-HSLs,N-decanoyl-l-homoserine lactone (C10-HSL) and a monounsaturated acyl-HSL (C10:1-HSL), in a cell-density- and growth phase-dependent manner, during batch and chemostat culture. The acyl-HSLs were detected by bioassay and identified by ultraperformance liquid chromatography with information-dependent acquisition mass spectrometry (UPLC-IDA-MS). The C=C bond in C10:1-HSL was confirmed by conversion into bromohydrin and detection by UPLC-IDA-MS.


2009 ◽  
Vol 191 (8) ◽  
pp. 2447-2460 ◽  
Author(s):  
Rebecca J. Malott ◽  
Eoin P. O'Grady ◽  
Jessica Toller ◽  
Silja Inhülsen ◽  
Leo Eberl ◽  
...  

ABSTRACT Burkholderia cenocepacia utilizes quorum sensing to control gene expression, including the expression of genes involved in virulence. In addition to CepR and CciR, a third LuxR homolog, CepR2, was found to regulate gene expression and virulence factor production. All B. cenocepacia strains examined contained this orphan LuxR homolog, which was not associated with an adjacent N-acyl-homoserine lactone synthase gene. Expression of cepR2 was negatively autoregulated and was negatively regulated by CciR in strain K56-2. Microarray analysis and quantitative reverse transcription-PCR determined that CepR2 did not influence expression of cepIR or cciIR. However, in strain K56-2, CepR2 negatively regulated expression of several known quorum-sensing-controlled genes, including genes encoding zinc metalloproteases. CepR2 exerted positive and negative regulation on genes on three chromosomes, including strong negative regulation of a gene cluster located adjacent to cepR2. In strain H111, which lacks the CciIR quorum-sensing system, CepR2 positively regulated pyochelin production by controlling transcription of one of the operons required for the biosynthesis of the siderophore in an N-acyl-homoserine lactone-independent manner. CepR2 activation of a luxI promoter was demonstrated in a heterologous Escherichia coli host, providing further evidence that CepR2 can function in the absence of signaling molecules. This study demonstrates that the orphan LuxR homolog CepR2 contributes to the quorum-sensing regulatory network in two distinct strains of B. cenocepacia.


Author(s):  
E.P. Dolgov ◽  
◽  
A.A. Abramov ◽  
E.V. Kuzminova ◽  
E.V. Rogaleva ◽  
...  

The article presents the data on the study of the influence of mycotoxins combination (T-2 toxin at the concentration of 0.095 mg/kg and aflatoxin B1 in the concentration of 0.019 mg/kg) on the body of quails and the results of pharmacocorrection of toxicosis with a complex consisting of beet pulp and lecithin. Structural changes in the intestines of quais at fodder mycotoxicosis are described. The use of antitoxic feed additives in poultry led to a weakening of the action of xenobiotics, which was confirmed by an increase in the safety of poultry and increase in body weight of quails, a decrease in the clinical manifestations of intoxication, as well as in positive changes in the structure of the intestine of the poultry during histological examination.


Author(s):  
Shereen A. Murugayah ◽  
Gary B. Evans ◽  
Joel D. A. Tyndall ◽  
Monica L. Gerth

Abstract Objective To change the specificity of a glutaryl-7-aminocephalosporanic acid acylase (GCA) towards N-acyl homoserine lactones (AHLs; quorum sensing signalling molecules) by site-directed mutagenesis. Results Seven residues were identified by analysis of existing crystal structures as potential determinants of substrate specificity. Site-saturation mutagenesis libraries were created for each of the seven selected positions. High-throughput activity screening of each library identified two variants—Arg255Ala, Arg255Gly—with new activities towards N-acyl homoserine lactone substrates. Structural modelling of the Arg255Gly mutation suggests that the smaller side-chain of glycine (as compared to arginine in the wild-type enzyme) avoids a key clash with the acyl group of the N-acyl homoserine lactone substrate. Conclusions Mutation of a single amino acid residue successfully converted a GCA (with no detectable activity against AHLs) into an AHL acylase. This approach may be useful for further engineering of ‘quorum quenching’ enzymes.


Sign in / Sign up

Export Citation Format

Share Document