Radix Pseudostellariae protein-curcumin nanocomplex: Improvement on the stability, cellular uptake and antioxidant activity of curcumin

2021 ◽  
Vol 151 ◽  
pp. 112110
Author(s):  
Xixi Cai ◽  
Qingxia Weng ◽  
Jiaming Lin ◽  
Guiqing Chen ◽  
Shaoyun Wang
2019 ◽  
Author(s):  
Candace E. Benjamin ◽  
Zhuo Chen ◽  
Olivia Brohlin ◽  
Hamilton Lee ◽  
Stefanie Boyd ◽  
...  

<div><div><div><p>The emergence of viral nanotechnology over the preceding two decades has created a number of intellectually captivating possible translational applications; however, the in vitro fate of the viral nanoparticles in cells remains an open question. Herein, we investigate the stability and lifetime of virus-like particle (VLP) Qβ - a representative and popular VLP for several applications - following cellular uptake. By exploiting the available functional handles on the viral surface, we have orthogonally installed the known FRET pair, FITC and Rhodamine B, to gain insight of the particle’s behavior in vitro. Based on these data, we believe VLPs undergo aggregation in addition to the anticipated proteolysis within a few hours of cellular uptake.</p></div></div></div>


2021 ◽  
Vol 16 (1) ◽  
pp. 92-101
Author(s):  
Guanghui Xia ◽  
Xinhua Li ◽  
Zhen Zhang ◽  
Yuhang Jiang

Abstract Polygonatum odoratum (Mill.) Druce (POD) is a natural plant widely used for food and medicine, thanks to its rich content of a strong antioxidant agent called homoisoflavones. However, food processing methods could affect the stability of POD flavones, resulting in changes to their antioxidant activity. This study attempts to evaluate the antioxidant activity of POD flavones subject to different processing methods and determines which method could preserve the antioxidant activity of POD flavones. Therefore, flavones were extracted from POD samples, which had been treated separately with one of the four processing methods: extrusion, baking, high-pressure treatment, and yeast fermentation. After that, the antioxidant activity of the flavones was subject to in vivo tests in zebrafish embryos. The results show that yeast fermentation had the least disruption to the antioxidant activity of POD flavones, making it the most suitable food processing method for POD. By contrast, extrusion and high-pressure treatment both slightly weakened the antioxidant activity of the flavones and should be avoided in food processing. The research results provide a reference for the development and utilization of POD and the protection of its biological activity.


Antioxidants ◽  
2021 ◽  
Vol 10 (2) ◽  
pp. 208
Author(s):  
Guillermo García-Díez ◽  
Roger Monreal-Corona ◽  
Nelaine Mora-Diez

The thermodynamic stability of 11 complexes of Cu(II) and 26 complexes of Fe(III) is studied, comprising the ligands pyridoxamine (PM), ascorbic acid (ASC), and a model Amadori compound (AMD). In addition, the secondary antioxidant activity of PM is analyzed when chelating both Cu(II) and Fe(III), relative to the rate constant of the first step of the Haber-Weiss cycle, in the presence of the superoxide radical anion (O2•−) or ascorbate (ASC−). Calculations are performed at the M05(SMD)/6-311+G(d,p) level of theory. The aqueous environment is modeled by making use of the SMD solvation method in all calculations. This level of theory accurately reproduces the experimental data available. When put in perspective with the stability of various complexes of aminoguanidine (AG) (which we have previously studied), the following stability trends can be found for the Cu(II) and Fe(III) complexes, respectively: ASC < AG < AMD < PM and AG < ASC < AMD < PM. The most stable complex of Cu(II) with PM (with two bidentate ligands) presents a ΔGf0 value of −35.8 kcal/mol, whereas the Fe(III) complex with the highest stability (with three bidentate ligands) possesses a ΔGf0 of −58.9 kcal/mol. These complexes can significantly reduce the rate constant of the first step of the Haber-Weiss cycle with both O2•− and ASC−. In the case of the copper-containing reaction, the rates are reduced up to 9.70 × 103 and 4.09 × 1013 times, respectively. With iron, the rates become 1.78 × 103 and 4.45 × 1015 times smaller, respectively. Thus, PM presents significant secondary antioxidant activity since it is able to inhibit the production of ·OH radicals. This work concludes a series of studies on secondary antioxidant activity and allows potentially new glycation inhibitors to be investigated and compared relative to both PM and AG.


Pharmaceutics ◽  
2021 ◽  
Vol 13 (9) ◽  
pp. 1460
Author(s):  
Hyeonmin Lee ◽  
Jun-Bae Bang ◽  
Young-Guk Na ◽  
Jae-Young Lee ◽  
Cheong-Weon Cho ◽  
...  

Curcumin (CUR) has been used in the treatment of various diseases such as cough, fever, skin disease, and infection because of various biological benefits such as anti-inflammatory, antiviral, antibacterial, and antitumor activity. However, CUR is a BCS class 4 group and has a limitation of low bioavailability due to low solubility and permeability. Therefore, the purpose of this study is to prepare a nanosuspension (NSP) loaded with CUR (CUR-NSP) using a statistical design approach to improve the oral bioavailability of CUR, and then to develop CUR-NSP coated with tannic acid to increase the mucoadhesion in the GI tract. Firstly, the optimized CUR-NSP, composed of sodium dodecyl sulfate (SDS) and polyvinylpyrrolidone/vinyl acetate (PVP/VA), was modified with tannic acid (TA). The particle size and polydispersity index of the formulation measured by laser scattering analyzer were 127.7 ± 1.3 nm and 0.227 ± 0.010, respectively. In addition, the precipitation in distilled water (DW) was 1.52 ± 0.58%. Using a differential scanning calorimeter and X-ray diffraction analysis, the stable amorphous form of CUR was confirmed in the formulation, and it was confirmed that CUR-NSP formulation was coated with TA through a Fourier transform-infrared spectroscopy. In the mucoadhesion assay using the turbidity, it was confirmed that TA-CUR-NSP had higher affinity for mucus than CUR-NSP under all pH conditions. This means that the absorption of CUR can be improved by increasing the retention time in the GI tract of the formulation. In addition, the drug release profile showed more than 80% release, and in the cellular uptake study, the absorption of the formulation (TA-CUR-NSP) containing TA acting as an inhibitor of P-gp was increased by 1.6-fold. In the evaluation of antioxidant activity, the SOD activity of TA-CUR-NSP was remarkably high due to TA, which improves cellular uptake and has antioxidant activity. In the pharmacokinetic evaluation, the maximum drug plasma concentration of the TA-coated NSP formulation was 7.2-fold higher than that of the pure drug. In all experiments, it was confirmed that the TA-CUR-NSP is a promising approach to overcome the low oral bioavailability of CUR.


Nanomaterials ◽  
2020 ◽  
Vol 10 (8) ◽  
pp. 1565 ◽  
Author(s):  
Pachabadee Marsup ◽  
Kankanit Yeerong ◽  
Waranya Neimkhum ◽  
Jakkapan Sirithunyalug ◽  
Songyot Anuchapreeda ◽  
...  

This study aimed to develop nanoemulsions for enhancing chemical stability and dermal delivery of Cordyceps militaris extracts. C. militaris was extracted by maceration and infusion. The extracts were investigated for cordycepin, phenolic, and flavonoid content. The antioxidant activity was investigated by in vitro spectrophotometric methods. The irritation profile was investigated by hen’s egg-chorioallantoic membrane test. Nanoemulsions were developed using high-pressure homogenizer. C. militaris extract was incorporated into the nanoemulsion and investigated for safety, release profile, permeation, and skin retention. The results demonstrated that water extract (CW) contained the significantly highest content of cordycepin, phenolics, and flavonoids, which were responsible for antioxidant activity. CW was the most potent antioxidant. CW possessed comparable 2,2′-diphenyl-1-picrylhydrazyl radical scavenging activity and lipid peroxidation inhibition to l-ascorbic acid (96.9 ± 3.1%) and alpha-tocopherol (87.2 ± 1.0%). Consequently, ten mg/mL of CW was incorporated into nanoemulsions composing of sugar squalene, Tween® 85, and deionized water. Nanoemulsion, which had the smallest internal droplet size (157.1 ± 2.6 nm), enhanced the stability of CW, had no cytotoxicity effect and no skin irritation, released the most CW (0.9 ± 0.0% w/w after 24 h), and delivered the highest CW into the skin layer (33.5 ± 0.7% w/w). Therefore, nanoemulsion was suggested for enhancing the stability and dermal delivery of CW.


RSC Advances ◽  
2015 ◽  
Vol 5 (112) ◽  
pp. 92089-92095 ◽  
Author(s):  
Zhengmei Wu ◽  
Jianwen Teng ◽  
Li Huang ◽  
Ning Xia ◽  
Baoyao Wei

The stability and antioxidant activity of phenolic compounds, as well as the bile acid-binding activity of green, black, raw liubao and aged liubao tea duringin vitrogastrointestinal digestion were evaluated.


2011 ◽  
Vol 30 (10) ◽  
pp. 829-838 ◽  
Author(s):  
Yun-Jun Liu ◽  
Zhen-Hua Liang ◽  
Zheng-Zheng Li ◽  
Jun-Hua Yao ◽  
Hong-Liang Huang

2018 ◽  
Vol 2018 ◽  
pp. 1-10 ◽  
Author(s):  
Mihaela Turturică ◽  
Nicoleta Stănciuc ◽  
Claudia Mureșan ◽  
Gabriela Râpeanu ◽  
Constantin Croitoru

The stability of anthocyanin was assessed over a temperature range of 50–120°C in different simulated plum juices in order to compare the thermal behavior in the presence of certain compounds. The results were correlated with the antioxidant activity and intrinsic fluorescence spectra. The results suggested significant changes, especially at higher temperature; hence, increase in the fluorescence intensity and some bathochromic and hypsochromic shifts were observed. Anthocyanins in natural matrices presented the highest rate for degradation, followed by the anthocyanins in juices with sugars. Values of the activation energies were 42.40 ± 6.87 kJ/mol for the degradation in water, 40.70 ± 4.25 kJ/mol for the juices with citric acid, 23.03 ± 3.53 kJ/mol for the juices containing sugars, 35.99 ± 3.60 kJ/mol for simulated juices with mixture, and 14.19 ± 2.39 kJ/mol for natural juices. A protective effect of sugars was evidenced, whereas in natural matrices, the degradation rate constant showed lower temperature dependence.


Sign in / Sign up

Export Citation Format

Share Document