In vitro toxicological evaluation of mesoporous silica microparticles functionalised with carvacrol and thymol

2021 ◽  
pp. 112778
Author(s):  
Cristina Fuentes ◽  
Ana Fuentes ◽  
Hugh J. Byrne ◽  
José Manuel Barat ◽  
María José Ruiz
Materials ◽  
2019 ◽  
Vol 12 (5) ◽  
pp. 766 ◽  
Author(s):  
Yan Li ◽  
Fangxiang Song ◽  
Liang Cheng ◽  
Jin Qian ◽  
Qianlin Chen

Large-pore coralline mesoporous silica microparticles (CMS) were synthesized using the triblock polymer PEG-b-PEO-b-PEG and a hydrothermal method. Scanning electron microscopy (SEM) and transmission electron microscopy (TEM) revealed the coralline morphology of the fabricated materials. The Brunauer–Emmett–Teller (BET) method and the Barrett–Joyner–Halenda (BJH) model confirmed the existence of large pores (20 nm) and of a tremendous specific surface area (663.865 m2·g−1) and pore volume (0.365 cm3·g−1). A novel pH-sensitive multiamine-chain carboxyl-functionalized coralline mesoporous silica material (CMS–(NH)3–COOH) was obtained via a facile “grafting-to” approach. X-ray photoelectron spectroscopy (XPS) and Fourier-transform infrared spectroscopy (FT-IR) validated the effective interfacial functionalization of CMS with carboxyl and multiamine chains. The encapsulation and release behavior of the dual drug (gefitinib (GB) and doxorubicin (DOX)) was also investigated. It was found that CMS–(NH)3–COOH allows rapid encapsulation with a high loading capacity of 47.36% for GB and 26.74% for DOX. Furthermore, the release profiles reveal that CMS–(NH)3–COOH can preferably control the release of DOX and GB. The accumulative release rates of DOX and GB were 32.03% and 13.66%, respectively, at a low pH (pH 5.0), while they reduced to 8.45% and 4.83% at pH 7.4. Moreover, all of the modified silica nanoparticles exhibited a high biocompatibility with a low cytotoxicity. In particular, the cytotoxicity of both of these two drugs was remarkably reduced after being encapsulated. CMS–(NH)3–COOH@GB@DOX showed tremendously synergistic effects of the dual drug in the antiproliferation and apoptosis of A549 human cancer cells in vitro.


Materials ◽  
2018 ◽  
Vol 11 (8) ◽  
pp. 1310 ◽  
Author(s):  
Gonçalo Marcelo ◽  
Jessica Ariana-Machado ◽  
Maria Enea ◽  
Helena Carmo ◽  
Benito Rodríguez-González ◽  
...  

Luminescent mesoporous silica nanoparticles, CdTeQDs@MNs@PEG1, SiQDs@Isoc@MNs and SiQDs@Isoc@MNs@PEG2, were successfully synthetized and characterized by SEM, TEM, XRD, N2 nitrogen isotherms, 1H NMR, IR, absorption, and emission spectroscopy. Cytotoxic evaluation of these nanoparticles was performed in relevant in vitro cell models, such as human hepatoma HepG2, human brain endothelial (hCMEC/D3), and human epithelial colorectal adenocarcinoma (Caco-2) cell lines. None of the tested nanoparticles showed significant cytotoxicity in any of the three performed assays (MTT/NR/ LDH) compared with the respective solvent and/or coating controls, excepting for CdTeQDs@MNs@PEG1 nanoparticles, where significant toxicity was noticed in hCMEC/D3 cells. The results presented reveal that SiQDs-based mesoporous silica nanoparticles are promising nanoplatforms for cancer treatment, with a pH-responsive drug release profile and the ability to load 80% of doxorubicin.


2011 ◽  
Vol 122 (1) ◽  
pp. 86-99 ◽  
Author(s):  
Suhail Al-Salam ◽  
Ghazala Balhaj ◽  
Suleiman Al-Hammadi ◽  
Manjusha Sudhadevi ◽  
Saeed Tariq ◽  
...  

Chemosphere ◽  
2021 ◽  
Vol 263 ◽  
pp. 128343
Author(s):  
Carlos Rumbo ◽  
Cristina Cancho Espina ◽  
Vladimir V. Popov ◽  
Konstantin Skokov ◽  
Juan Antonio Tamayo-Ramos

Materials ◽  
2021 ◽  
Vol 14 (12) ◽  
pp. 3337
Author(s):  
Sara Hooshmand ◽  
Sahar Mollazadeh ◽  
Negar Akrami ◽  
Mehrnoosh Ghanad ◽  
Ahmed El-Fiqi ◽  
...  

Exploring new therapies for managing skin wounds is under progress and, in this regard, mesoporous silica nanoparticles (MSNs) and mesoporous bioactive glasses (MBGs) offer great opportunities in treating acute, chronic, and malignant wounds. In general, therapeutic effectiveness of both MSNs and MBGs in different formulations (fine powder, fibers, composites etc.) has been proved over all the four stages of normal wound healing including hemostasis, inflammation, proliferation, and remodeling. The main merits of these porous substances can be summarized as their excellent biocompatibility and the ability of loading and delivering a wide range of both hydrophobic and hydrophilic bioactive molecules and chemicals. In addition, doping with inorganic elements (e.g., Cu, Ga, and Ta) into MSNs and MBGs structure is a feasible and practical approach to prepare customized materials for improved skin regeneration. Nowadays, MSNs and MBGs could be utilized in the concept of targeted therapy of skin malignancies (e.g., melanoma) by grafting of specific ligands. Since potential effects of various parameters including the chemical composition, particle size/morphology, textural properties, and surface chemistry should be comprehensively determined via cellular in vitro and in vivo assays, it seems still too early to draw a conclusion on ultimate efficacy of MSNs and MBGs in skin regeneration. In this regard, there are some concerns over the final fate of MSNs and MBGs in the wound site plus optimal dosages for achieving the best outcomes that deserve careful investigation in the future.


2021 ◽  
pp. 088532822110038
Author(s):  
Mohammad Yousef Memar ◽  
Mina Yekani ◽  
Hadi Ghanbari ◽  
Edris Nabizadeh ◽  
Sepideh Zununi Vahed ◽  
...  

The aims of the present study were the determination of antimicrobial and antibiofilm effects of meropenem-loaded mesoporous silica nanoparticles (MSNs) on carbapenem resistant Pseudomonas aeruginosa ( P. aeruginosa) and cytotoxicity properties in vitro. The meropenem-loaded MSNs had shown antibacterial and biofilm inhibitory activities on all isolates at different levels lower than MICs and BICs of meropenem. The viability of HC-04 cells treated with serial concentrations as MICs and BICs of meropenem-loaded MSNs was 92–100%. According to the obtained results, meropenem-loaded MSNs display the significant antibacterial and antibiofilm effects against carbapenem resistant and biofilm forming P. aeruginosa and low cell toxicity in vitro. Then, the prepared system can be an appropriate option for the delivery of carbapenem for further evaluation in vivo assays.


Pharmaceutics ◽  
2019 ◽  
Vol 11 (6) ◽  
pp. 288 ◽  
Author(s):  
Thashini Moodley ◽  
Moganavelli Singh

There is a need for the improvement of conventional cancer treatment strategies by incorporation of targeted and non-invasive procedures aimed to reduce side-effects, drug resistance, and recurrent metastases. The anti-cancer drug, 5-fluorouracil (5-FU), is linked to a variety of induced-systemic toxicities due to its lack of specificity and potent administration regimens, necessitating the development of delivery vehicles that can enhance its therapeutic potential, while minimizing associated side-effects. Polymeric mesoporous silica nanoparticles (MSNs) have gained popularity as delivery vehicles due to their high loading capacities, biocompatibility, and good pharmacokinetics. MSNs produced in this study were functionalized with the biocompatible polymers, chitosan, and poly(ethylene)glycol to produce monodisperse NPs of 36–65 nm, with a large surface area of 710.36 m2/g, large pore volume, diameter spanning 9.8 nm, and a favorable zeta potential allowing for stability and enhanced uptake of 5-FU. Significant drug loading (0.15–0.18 mg5FU/mgmsn), controlled release profiles (15–65%) over 72 hours, and cell specific cytotoxicity in cancer cells (Caco-2, MCF-7, and HeLa) with reduced cell viability (≥50%) over the non-cancer (HEK293) cells were established. Overall, these 5FU-MSN formulations have been shown to be safe and effective delivery systems in vitro, with potential for in vivo applications.


2015 ◽  
Vol 44 (1) ◽  
pp. 237-246 ◽  
Author(s):  
Ying Liu ◽  
Lining Sun ◽  
Jinliang Liu ◽  
Yu-Xin Peng ◽  
Xiaoqian Ge ◽  
...  

Using the modified phenanthroline ligand, the multicolor mesoporous silica nanospheres linked with lanthanide complexes were synthesized and characterized, and the application for cell imaging has been studied.


Sign in / Sign up

Export Citation Format

Share Document