Phenolic content and antioxidant activity of olive by-products and antioxidant film containing olive leaf extract

2016 ◽  
Vol 212 ◽  
pp. 521-527 ◽  
Author(s):  
M. Moudache ◽  
M. Colon ◽  
C. Nerín ◽  
F. Zaidi
2016 ◽  
Vol 87 (4) ◽  
pp. 444-459 ◽  
Author(s):  
Zdenka Peršin ◽  
Matej Ravber ◽  
Karin Stana Kleinschek ◽  
Željko Knez ◽  
Mojca Škerget ◽  
...  

Considering the increasing resistance of numerous bacteria to antibiotics, a novel wound dressing material was developed with naturally acquired olive leaf extract, which shows not only good antimicrobial activity, but also very good antioxidant activity. Besides that, the leaves are treated as waste in agriculture, giving an impact on waste management. An environmentally friendly procedure, electrospinning, was used for the first time to prepare polysaccharide nanofibrous mats with incorporated olive leaf extract, with the unique property of releasing the active phenolic components in a prolonged manner over 24 hours. The developed electrospun mats were characterized using scanning electron microscopy, high-performance liquid chromatography and ultraviolet-visible spectroscopy for determination of free radical scavenging activity by 2,2-diphenyl-1-picrylhydrazyl, antimicrobial testing and release kinetics. Antimicrobial tests have shown that electrospun mats with olive leaf extract achieve reduction towards the tested microorganisms: Staphylococcus aureus (G+), Escherichia coli (G-), Enterococcus faecalis (G+) and Pseudomonas aeruginosa (G-), while the high antioxidant activity of olive leaf extract was preserved during the electrospinning procedure. Release of olive leaf extract from electrospun mats was mathematically modeled, and the release kinetics evaluation indicates the appropriateness of the Korsmeyer–Peppas model for fitting the obtained results of release ability due to erosion of polysaccharide nanofiber mats.


2020 ◽  
Vol 2020 ◽  
pp. 1-7
Author(s):  
Won-Young Cho ◽  
Da-Hee Kim ◽  
Ha-Jung Lee ◽  
Su-Jung Yeon ◽  
Chi-Ho Lee

The quest for natural preservatives and functional foods with health benefits has seen an increasing demand for natural products having therapeutic value. Herein, we investigated the influence of ethanol, methanol, acetone (50%, 70%, and 90% v/v), and distilled water on selected properties of olive leaf extract and determined the yield, total phenolic content (TPC), antioxidant activity, and antimicrobial activity. Extracts were analyzed for their oleuropein, hydroxytyrosol, and tyrosol contents by high-performance liquid chromatography (HPLC). The highest extraction yield of 20.41% was obtained when using 90 vol% methanol, while the highest total polyphenol contents of 232 and 231 mggallic-acid-equivalent/100 g were obtained for 90 vol% methanol and 90 vol% ethanol, respectively. Antioxidant activity was determined using the α,α-diphenyl-β-picrylhydrazyl (DPPH) radical scavenging assay, by determining the ferric reducing antioxidant power (FRAP), and using the Fe2+-chelating activity assay, which provided the highest values when 90 vol% methanol was used (33.84%, 0.75, and 12.91%, respectively). HPLC analysis showed that the highest oleuropein contents corresponded to the extracts obtained using 90 and 70 vol% methanol (26.10 ± 0.20 and 24.92 ± 1.22 g/L, respectively), and the highest antimicrobial activity was observed for 90 vol% methanol and distilled water. Olive leaf extracts using 90 vol% methanol had high levels of polyphenols and were highly antioxidant and antimicrobial. The results of this study facilitate the commercial applications of natural extracts with antioxidant and antibacterial activities and are expected to establish a foundation for further optimization studies.


Heliyon ◽  
2018 ◽  
Vol 4 (9) ◽  
pp. e00805 ◽  
Author(s):  
Patricia Goldschmidt Lins ◽  
Silvana Marina Piccoli Pugine ◽  
Antonio Márcio Scatolini ◽  
Mariza Pires de Melo

2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Toshio Mikami ◽  
Jimmy Kim ◽  
Jonghyuk Park ◽  
Hyowon Lee ◽  
Pongson Yaicharoen ◽  
...  

AbstractObesity is a risk factor for development of metabolic diseases and cognitive decline; therefore, obesity prevention is of paramount importance. Neuronal mitochondrial dysfunction induced by oxidative stress is an important mechanism underlying cognitive decline. Olive leaf extract contains large amounts of oleanolic acid, a transmembrane G protein-coupled receptor 5 (TGR5) agonist, and oleuropein, an antioxidant. Activation of TGR5 results in enhanced mitochondrial biogenesis, which suggests that olive leaf extract may help prevent cognitive decline through its mitochondrial and antioxidant effects. Therefore, we investigated olive leaf extract’s effects on obesity, cognitive decline, depression, and endurance exercise capacity in a mouse model. In physically inactive mice fed a high-fat diet, olive leaf extract administration suppressed increases in fat mass and body weight and prevented cognitive declines, specifically decreased working memory and depressive behaviors. Additionally, olive leaf extract increased endurance exercise capacity under atmospheric and hypoxic conditions. Our study suggests that these promising effects may be related to oleanolic acid’s improvement of mitochondrial function and oleuropein’s increase of antioxidant capacity.


2021 ◽  
Vol 134 ◽  
pp. 111139
Author(s):  
Reyes Benot-Dominguez ◽  
Maria Grazia Tupone ◽  
Vanessa Castelli ◽  
Michele d’Angelo ◽  
Elisabetta Benedetti ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document