Molecular-structure evolution during in vitro fermentation of granular high-amylose wheat starch is different to in vitro digestion

2021 ◽  
pp. 130188
Author(s):  
Haiteng Li ◽  
Robert G. Gilbert ◽  
Michael J. Gidley
Foods ◽  
2021 ◽  
Vol 10 (2) ◽  
pp. 303
Author(s):  
Konstantinos Korompokis ◽  
Lomme J. Deleu ◽  
Niels De Brier ◽  
Jan A. Delcour

The fine molecular structure of starch governs its functionality and digestibility, and enzymatic approaches can be utilized to tailor its properties. The aim of this study was to investigate the in situ modification of starch by amylomaltase (AMM) from Thermus thermophilus in model starch systems subjected to hydrothermal treatments under standardized conditions and the relationship between molecular structure, rheological properties and in vitro digestibility. When low dosages of AMM were added to a wheat starch suspension prior to submitting it to a temperature-time profile in a Rapid Visco Analyzer, the increased peak viscosity observed was attributed to partial depolymerization of amylose, which facilitated starch swelling and viscosity development. At higher dosages, the effect was smaller. The low cold paste viscosity as a result of the activity of AMM reflected substantial amylose depolymerization. At the same time, amylopectin chains were substantially elongated. The longer amylopectin chains were positively correlated (R2 = 0.96) with the melting enthalpies of retrograded starches, which, in turn, were negatively correlated with the extent (R2 = 0.92) and rate (R2 = 0.79) of in vitro digestion. It was concluded that AMM has the potential to be used to deliver novel starch functionalities and enhance its nutritional properties.


2010 ◽  
Vol 24 (S1) ◽  
Author(s):  
Li Li ◽  
Man‐Yu Yum ◽  
Pamela White ◽  
Mark Campbell ◽  
Suzanne Hendrich

2019 ◽  
Vol 97 (Supplement_3) ◽  
pp. 114-115
Author(s):  
Cienna J Boss ◽  
Jung Wook Lee ◽  
Rob Patterson ◽  
Tofuko A Woyengo

Abstract A study was conducted to determine effects of pretreating and supplementing soybean hulls with multi-enzyme on porcine in vitro digestion and fermentation characteristics. Treatments were untreated and heat-pretreated (160 °C and 70 psi for 20 min) soybean hulls without or with multi-enzyme in a 2 × 2 factorial arrangement. The multi-enzyme supplied 2,800 U of cellulase, 1,800 U of pectinase, 400 U of mannanase, 1,000 U of xylanase, 600 U of glucanase, and 200 U of protease/kilogram of feedstuff. Feedstuffs were subjected to in vitro digestion with porcine pepsin and pancreatin, followed by in vitro fermentation for 72 h. Accumulated gas production was recorded and modeled to estimate kinetics of gas production. On DM basis, untreated and pretreated soybean hulls contained 10.4 and 10.6% CP, and 63.2 and 49.5% ADF, respectively. Pretreatment and multi-enzyme supplementation did not interact on in vitro digestibility of DM (IVDDM). Untreated and pretreated soybean hulls did not differ in IVDDM (24.8 vs. 25.7%). Multi-enzyme increased (P < 0.05) IVDDM of soybean hulls by a mean of 45.5%. Pretreatment and multi-enzyme unaffected total gas production. Pretreatment and multi-enzyme interacted (P < 0.05) on fractional rate of degradation such that the fractional rate of degradation for pretreated soybean hulls was greater (P < 0.05) than that of untreated soybean hulls when soybean hulls were supplemented with multi-enzyme (0.045 vs. 0.062 h-1), but not when soybean hulls were unsupplemented with multi-enzyme (0.053 vs. 0.059 h-1). In conclusion, multi-enzyme supplementation increased IVDDM, implying that the multi-enzyme used in the study can be used to enhance utilization of soybean hulls. Heat pretreatment increased the rate of fermentation of multi-enzyme-supplemented soybean hulls, implying that the rate of fermentation of soybean hulls in the hindgut of pigs can be enhanced by a combination of heat pretreatment and multi-enzyme supplementation.


2018 ◽  
Vol 26 (3) ◽  
pp. 227 ◽  
Author(s):  
Rodrigo Abad-Guzmán ◽  
Jose Antonio Larrea-Dávalos ◽  
Rosa Carabaño ◽  
Javier García ◽  
Maria Dolores Carro

<p>Two <em>in vitro</em> experiments were performed to analyse the fermentative potential of ileal content, caecal content, soft faeces and hard faeces from adult rabbits. Experiment 1 evaluated 3 doses (0.5, 1.0 and 2.0 g fresh digesta/g substrate dry matter [DM]) of ileal and caecal digesta as inoculum in 28 h-incubations. Two ileal and 2 caecal inocula were obtained, each by pooling the ileal or caecal digesta of 2 adult rabbits. Pectin from sugar beet pulp (SBP) and the insoluble residue obtained after a 2-step <em>in vitro</em> pre-digestion of SBP and wheat straw were used as substrates. The 0.5 dose produced the lowest (<em>P</em>&lt;0.05) amount of gas at 28 h, with no differences (<em>P</em>&gt;0.05) between the 1.0 and 2.0 doses (44.9, 51.6 and 53.8 mL/g substrate DM, respectively; values averaged across inocula and substrates). Experiment 2 evaluated two doses of ileal inoculum (1 and 1.5 g fresh digesta/g substrate DM) and compared ileal digesta, caecal digesta, soft faeces and hard faeces as inoculum for determining <em>in vitro</em> gas production (144-h incubations) of the 3 substrates used in Experiment 1 and wheat starch. Three inocula of each type were obtained, each by pooling either digesta or faeces from 3 rabbits. There were no differences (<em>P</em>&gt;0.05) between the 2 ileal doses tested in gas production parameters, and therefore the 1.0 dose was selected for further ileal fermentations. Starch and pectin showed similar (<em>P</em>&gt;0.05) values of gas production rate and maximal gas production rate when they were fermented with caecal digesta (0.038 vs. 0.043%/h, and 13.7 vs. 15.2 mL/h, respectively), soft (0.022 vs. 0.031%/h, and 9.97 vs. 9.33 mL/h) and hard faeces (0.031 vs. 0.038%/h, and 13.6 vs. 10.8 mL/h), and values were higher than those for SBP and wheat straw; in contrast, values for starch and pectin differed with the ileal inoculum (0.046 vs. 0.024%/h, and 18.4 vs. 6.60 mL/h). Both ileal and caecal gas production parameters were well correlated with those for hard and soft faeces inocula, respectively (r≥0.77; <em>P</em>≤0.040). The ileal inoculum showed a relevant fermentative potential, but lower than that of caecal digesta and soft and hard faeces for all substrates except wheat starch.</p>


2020 ◽  
Vol 2020 ◽  
pp. 1-11
Author(s):  
YunFei Ge ◽  
WeiHao Wang ◽  
Meng Shen ◽  
ZiYue Kang ◽  
Juan Wang ◽  
...  

Relevant research results have suggested that fermentation can increase the content of sorghum amylose chains and their retrogradation value. Therefore, this study explored the effect of fermentation pretreatment on the yield, digestibility, molecular structure, and in vitro fermentation property of sorghum-resistant starch by conducting fermentation pretreatment of sorghum and extracting the resistant starch from fermented sorghum with pressure-heat compound enzyme method. The results were as follows. After fermentation pretreatment, the yield of sorghum-resistant starch increased, the digestibility of sorghum-resistant starch reduced, the laminated structure size on the surface of the particles became more uniform, and the stacking mode became more neat and denser. The sorghum-resistant starch prepared before and after fermentation did not produce new chemical groups, and its functional group peak remained unchanged. After fermentation, the weight-average molecular weight of sorghum-resistant starch was elevated, and the percentage content of high- and low-molecular substances increased and decreased, respectively, compared with that of the unfermented sorghum-resistant starch. The percentage content of short-chain branches in the branched chain increased, whereas that of the long-chain branches decreased; the crystallinity of sorghum-resistant starch after fermentation decreased, and the intensity of X-diffraction peak changed slightly before and after fermentation. According to the results of the in vitro fermentation experiments, the fermentation broth of sorghum-resistant starch had the highest content of butyric acid and short-chain fatty acid. Research results reveal that, after fermentation pretreatment, sorghum-resistant starch presented increased yield, more complex molecular structure, heavier molecular weight and more uniform surface morphology, more efficient butyric acid generation, and greater fermentation rate than unfermented sorghum-resistant starch.


2020 ◽  
Vol 11 (6) ◽  
pp. 5635-5646 ◽  
Author(s):  
Alexander T. Bui ◽  
Barbara A. Williams ◽  
Emily C. Hoedt ◽  
Mark Morrison ◽  
Deirdre Mikkelsen ◽  
...  

In vitro fermentation of wheat starch depends on amylose content in cooked but not granule forms, and shows that high amylose wheat is a promising source of fermentable carbohydrate in the large intestine.


Sign in / Sign up

Export Citation Format

Share Document