The impacts of antimicrobial and antifungal activity of cell‐free supernatants from lactic acid bacteria in vitro and foods

Author(s):  
Emma Mani‐López ◽  
Daniela Arrioja‐Bretón ◽  
Aurelio López‐Malo
2020 ◽  
Vol 9 (1) ◽  
pp. 78
Author(s):  
Sabrina Strafella ◽  
David J. Simpson ◽  
Mohammad Yaghoubi Khanghahi ◽  
Maria De Angelis ◽  
Michael Gänzle ◽  
...  

This study aimed to isolate lactic acid bacteria (LAB) from wheat rhizosphere, to characterize their in vitro plant growth promoting activities and to differentiate plant-associated LAB from those associated with foods or human disease through comparative genomic analysis. Lactococcus lactis subsp. lactis and Enterococcus faecium were isolated using de Man-Rogosa-Sharpe (MRS) and Glucose Yeast Peptone (GYP) as enrichment culture media. Comparative genomic analyses showed that plant-associated LAB strains were enriched in genes coding for bacteriocin production when compared to strains from other ecosystems. Isolates of L. lactis and E. faecium did not produce physiologically relevant concentrations of the phyto-hormone indolacetic acid. All isolates solubilized high amount of phosphate and 12 of 16 strains solubilized potassium. E. faecium LB5, L. lactis LB6, LB7, and LB9 inhibited the plant pathogenic Fusarium graminearum to the same extent as two strains of Bacillus sp. However, the antifungal activity of the abovementioned LAB strains depended on the medium of cultivation and a low pH while antifungal activity of Bacillus spp. was independent of the growth medium and likely relates to antifungal lipopeptides. This study showed the potential of rhizospheric LAB for future application as biofertilizers in agriculture.


Author(s):  
Elif Canpolat ◽  
Müzeyyen Müge Doğaner ◽  
Sibel Derviş ◽  
Çiğdem Ulubaş Serçe

Developing as an alternative plant disease control method by using beneficial microorganisms and their metabolites has gained so much importance in recent years. In this study, the possibilities of using microorganisms which have potential antimicrobial effects on controlling soil-borne fungi at strawberry production were investigated. Effects of different lactic acid bacteria (LAB) strains on the development of several soil-borne fungi were studied in vitro and in vivo. LAB were screened for antifungal activity by using cell free supernatant against Fusarium sp., Rhizoctonia sp., Macrophomina sp., Botrytis sp., Phtopythium sp., Cylindrocarpon sp. and Pestalotiopsis sp. Cell free supernatant of LAB isolates showed promising antifungal activity. In vitro effective strains of LAB were tested in pot experiments to search their effects on disease development and plant growth. While the antifungal effects of all LAB strains tested in vitro experiments exhibited promising results, in vivo experiments revealed similar effects on different fungi genera.


Plants ◽  
2021 ◽  
Vol 10 (2) ◽  
pp. 285
Author(s):  
Fernando H. Ranjith ◽  
Belal J. Muhialdin ◽  
Noor L. Yusof ◽  
Nameer K. Mohammed ◽  
Muhammad H. Miskandar ◽  
...  

Background: the antagonism activity of lactic acid bacteria metabolites has the potential to prevent fungal growth on mango. Methods: the potential of developing natural disinfectant while using watermelon rinds (WR), pineapple (PP), orange peels (OP), palm kernel cake (PKC), and rice bran (RB), via lacto-fermentation was investigated. The obtained lactic acid bacteria (LAB) metabolites were then employed and the in vitro antifungal activity toward five spoilage fungi of mango was tested through liquid and solid systems. Besides, the effect of the produced disinfectant on the fungal growth inhibition and quality of mango was investigated. Results: the strains Lactobacillus plantarum ATCC8014 and Lactobacillus fermentum ATCC9338 growing in the substrates PKC and PP exhibited significantly higher in vitro antifungal activity against Colletotrichum gloeosporioides and Botryodiplodia theobromae as compared to other tested LAB strains and substrates. The in-situ results demonstrated that mango samples that were treated with the disinfectant produced from PKC fermented with L. plantarum and L. fermentum had the lowest disease incidence and disease severity index after 16 days shelf life, as well as the lowest conidial concentration. Furthermore, PKC that was fermented by L. fermentum highly maintained the quality of the mango. Conclusions: lactic acid fermentation of PKC by L. fermentum demonstrated a high potential for use as a natural disinfectant to control C. gloeosporioides and B. theobromae on mango.


Author(s):  
Rihua Xu ◽  
Ren Sa ◽  
Junwei Jia ◽  
Lanlan Li ◽  
Xiao Wang ◽  
...  

The demand for “preservative-free” food products is rising, and biopreservation seems to be a potential alternative to replace or reduce the use of chemical preservatives. This study’s objective was to assess the antifungal activity of lactic acid bacteria (LAB) (n = 98) and the efficacy and applicability of the chosen bioprotective cultures against fungal spoilers in dairy products. First, 14 strains of antifungal strains were preliminarily screened by in vitro tests against Pichia pastoris D3, Aspergillus niger D1, Geotrichum candidum N1, Kluyveromyces marxianus W1, and Penicillium chrysogenum B1 and validated by challenge tests in yogurts, indicating that the fungal-inhibiting activity of LAB was species specific and yogurts fermented with antifungal LAB cultures were more effective in extending the shelf life. Secondly, the chosen 14 LAB strains were identified by the 16SrDNA sequence analysis and carbohydrate fermentation test. The results were as follows: 9 strains were Lactobacillus plantarum , 3 were Lactobacillus paracasei , 1 was Enterococus faecium , and 1 was Lactobacillus rhamnosus. Among them, active L. plantarum N7 was the chosen and studied factor that affects the antifungal activity using the response surface methodology (RSM). Finally, in situ tests were conducted to validate the activity of L. plantarum N7 in actual dairy products (whey beverage). Physicochemical and microbial indices of whey beverage during storage period exhibited that antifungal L. plantarum N7 could slow the fungal growth and be candidates of interest for industrial applications.


2005 ◽  
Vol 34 (1) ◽  
pp. 91-99 ◽  
Author(s):  
K. Szekér ◽  
J. Beczner ◽  
A. Halász ◽  
Á. Mayer ◽  
J.M. Rezessy-Szabó ◽  
...  

2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Chatchai Kaewpila ◽  
Pongsatorn Gunun ◽  
Piyawit Kesorn ◽  
Sayan Subepang ◽  
Suwit Thip-uten ◽  
...  

AbstractImproving the nutrition of livestock is an important aspect of global food production sustainability. This study verified whether lactic acid bacteria (LAB) inoculant could promote ensiling characteristics, nutritive value, and in vitro enteric methane (CH4) mitigation of forage sorghum (FS) mixture silage in attacking malnutrition in Zebu beef cattle. The FS at the soft dough stage, Cavalcade hay (CH), and cassava chip (CC) were obtained. The treatments were designed as a 4 × 2 factorial arrangement in a completely randomized design. Factor A was FS prepared without or with CH, CC, and CH + CC. Factor B was untreated or treated with Lactobacillus casei TH14. The results showed that all FS mixture silages preserved well with lower pH values below 4.0 and higher lactic acid contents above 56.4 g/kg dry matter (DM). Adding LAB boosted the lactic acid content of silages. After 24 h and 48 h of in vitro rumen incubation, the CC-treated silage increased in vitro DM digestibility (IVDMD) with increased total gas production and CH4 production. The LAB-treated silage increased IVDMD but decreased CH4 production. Thus, the addition of L. casei TH14 inoculant could improve lactic acid fermentation, in vitro digestibility, and CH4 mitigation in the FS mixture silages.


Molecules ◽  
2021 ◽  
Vol 26 (9) ◽  
pp. 2579
Author(s):  
Carmen-Alina Bolea ◽  
Mihaela Cotârleț ◽  
Elena Enachi ◽  
Vasilica Barbu ◽  
Nicoleta Stănciuc

Two multi-functional powders, in terms of anthocyanins from black rice (Oryza sativa L.) and lactic acid bacteria (Lactobacillus paracasei, L. casei 431®) were obtained through co-microencapsulation into a biopolymer matrix composed of milk proteins and inulin. Two extracts were obtained using black rice flour as a raw material and hot water and ethanol as solvents. Both powders (called P1 for aqueous extract and P2 for ethanolic extract) proved to be rich sources of valuable bioactives, with microencapsulation efficiency up to 80%, both for anthocyanins and lactic acid bacteria. A higher content of anthocyanins was found in P1, of 102.91 ± 1.83 mg cyanindin-3-O-glucoside (C3G)/g dry weight (DW) when compared with only 27.60 ± 17.36 mg C3G/g DW in P2. The morphological analysis revealed the presence of large, thin, and fragile structures, with different sizes. A different pattern of gastric digestion was observed, with a highly protective effect of the matrix in P1 and a maximum decrease in anthocyanins of approximatively 44% in P2. In intestinal juice, the anthocyanins decreased significantly in P2, reaching a maximum of 97% at the end of digestion; whereas in P1, more than 45% from the initial anthocyanins content remained in the microparticles. Overall, the short-term storage stability test revealed a release of bioactive from P2 and a decrease in P1. The viable cells of lactic acid bacteria after 21 days of storage reached 7 log colony forming units (CFU)/g DW.


Sign in / Sign up

Export Citation Format

Share Document