Rapid large-volume concentration for increased detection of Escherichia coli O157:H7 and Listeria monocytogenes in lettuce wash water generated at commercial facilities

Food Control ◽  
2019 ◽  
Vol 98 ◽  
pp. 481-488 ◽  
Author(s):  
Elizabeth A. Kearns ◽  
Ryann E. Gustafson ◽  
Sonia M. Castillo ◽  
Hamoud Alnughaymishi ◽  
Daniel V. Lim ◽  
...  
2009 ◽  
Vol 72 (5) ◽  
pp. 1047-1054 ◽  
Author(s):  
LEEN BAERT ◽  
ISABELLE VANDEKINDEREN ◽  
FRANK DEVLIEGHERE ◽  
ELS VAN COILLIE ◽  
JOHAN DEBEVERE ◽  
...  

The efficiency of sodium hypochlorite (NaOCl) and peroxyacetic acid (PAA) to reduce murine norovirus 1 (MNV-1), a surrogate for human norovirus, and Bacteroides fragilis HSP40–infecting phage B40-8 on shredded iceberg lettuce was investigated. The levels of removal of viruses MNV-1 and B40-8 were compared with the reductions observed for bacterial pathogens Listeria monocytogenes and Escherichia coli O157:H7. Two inoculation levels, one with a high organic load and the other containing a 10-fold lower number of pathogens and organic matter, showed that the effectiveness of NaOClwas greatly influenced by the presence of organic material, which was not observed for PAA. Moreover, the present study showed that 200 mg/liter NaOCl or 250 mg/liter PAA is needed to obtain an additional reduction of 1 log (compared with tap water) of MNV-1 on shredded iceberg lettuce, whereas only 250 mg/liter PAA achieved this for bacterial pathogens. None of the treatments resulted in a supplementary 1-log PFU/g reduction of B40-8 compared with tap water. B40-8 could therefore be useful as an indicator of decontamination processes of shredded iceberg lettuce based on NaOCl or PAA. Neither MNV-1, B40-8, nor bacterial pathogens could be detected in residual wash water after shredded iceberg lettuce was treated with NaOCl and PAA, whereas considerable numbers of all these microorganisms were found in residual wash water consisting solely of tap water. This study illustrates the usefulness of PAA and NaOCl in preventing cross-contamination during the washing process rather than in causing a reduction of the number of pathogens present on lettuce.


2002 ◽  
Vol 65 (1) ◽  
pp. 100-105 ◽  
Author(s):  
KUMAR S. VENKITANARAYANAN ◽  
CHIA-MIN LIN ◽  
HANNALORE BAILEY ◽  
MICHAEL P. DOYLE

The objective of this study was to develop a practical and effective method for inactivating or substantially reducing Escherichia coli O157:H7, Salmonella Enteritidis, and Listeria monocytogenes on apples, oranges, and tomatoes. Apples, oranges, and tomatoes were spot-inoculated with five-strain mixtures of E. coli O157:H7, Salmonella Enteritidis, and L. monocytogenes near the stem end and were submerged in sterile deionized water containing 1.5% lactic acid plus 1.5% hydrogen peroxide for 15 min at 40°C. Inoculated samples treated with sterile deionized water at the same temperature and for the same duration served as controls. The bacterial pathogens on fruits subjected to the chemical treatment were reduced by >5.0 log10 CFU per fruit, whereas washing in deionized water decreased the pathogens by only 1.5 to 2.0 log10 CFU per fruit. Furthermore, substantial populations of the pathogens survived in the control wash water, whereas no E. coli O157:H7, Salmonella Enteritidis, or L. monocytogenes cells were detected in the chemical treatment solution. The sensory and qualitative characteristics of apples treated with the chemical wash solution were not adversely affected by the treatment. It was found that the treatment developed in this study could effectively be used to kill E. coli O157:H7, Salmonella Enteritidis, and L. monocytogenes on apples, oranges, and tomatoes at the processing or packaging level.


2008 ◽  
Vol 71 (3) ◽  
pp. 625-628 ◽  
Author(s):  
J. D. STOPFORTH ◽  
T. MAI ◽  
B. KOTTAPALLI ◽  
M. SAMADPOUR

Recent foodborne outbreaks implicating spinach and lettuce have increased consumer concerns regarding the safety of fresh produce. While the most common commercial antimicrobial intervention for fresh produce is wash water containing 50 to 200 ppm chlorine, this study compares the effectiveness of acidified sodium chlorite, chlorine, and acidic electrolyzed water for inactivating Escherichia coli O157:H7, Salmonella, and Listeria monocytogenes inoculated onto leafy greens. Fresh mixed greens were left uninoculated or inoculated with approximately 6 log CFU/g of E. coli O157:H7, Salmonella, and L. monocytogenes and treated by immersion for 60 or 90 s in different wash solutions (1:150, wt/vol), including 50 ppm of chlorine solution acidified to pH 6.5, acidic electrolyzed water (pH 2.1 ± 0.2, oxygen reduction potential of 1,100 mV, 30 to 35 ppm of free chlorine), and acidified sodium chlorite (1,200 ppm, pH 2.5). Samples were neutralized and homogenized. Bacterial survival was determined by standard spread plating on selective media. Each test case (organism × treatment × time) was replicated twice with five samples per replicate. There was no difference (P ≥ 0.05) in the time of immersion on the antimicrobial effectiveness of the treatments. Furthermore, there was no difference (P ≥ 0.05) in survival of the three organisms regardless of treatment or time. Acidified sodium chlorite, resulted in reductions in populations of 3 to 3.8 log CFU/g and was more effective than chlorinated water (2.1 to 2.8 log CFU/g reduction). These results provide the produce industry with important information to assist in selection of effective antimicrobial strategies.


2018 ◽  
Vol 19 (0) ◽  
Author(s):  
Priscila Alves Dias ◽  
Daiani Teixeira Silva ◽  
Cláudio Dias Timm

Resumo Kefir é o produto da fermentação do leite pelos grãos de kefir. Esses grãos contêm uma mistura simbiótica de bactérias e leveduras imersas em uma matriz composta de polissacarídeos e proteínas. Muitos benefícios à saúde humana têm sido atribuídos ao kefir, incluindo atividade antimicrobiana contra bactérias Gram positivas e Gram negativas. A atividade antimicrobiana de 60 microrganismos isolados de grãos de kefir, frente à Escherichia coli O157:H7, Salmonella enterica subsp. enterica sorotipos Typhimurium e Enteritidis, Staphylococcus aureus e Listeria monocytogenes, foi estudada através do teste do antagonismo. A ação antimicrobiana dos sobrenadantes das bactérias ácido-lácticas que apresentaram atividade no teste do antagonismo foi testada. O experimento foi repetido usando sobrenadantes com pH neutralizado. Salmonella Typhimurium e Enteritidis sobreviveram por 24 horas no kefir em fermentação. E. coli O157:H7, S. aureus e L. monocytogenes foram recuperados até 72 horas após o início da fermentação. Todos os isolados apresentaram atividade antimicrobiana contra pelo menos um dos patógenos usados no teste do antagonismo. Sobrenadantes de 25 isolados apresentaram atividade inibitória e três mantiveram essa atividade com pH neutralizado. As bactérias patogênicas estudadas sobreviveram por tempo superior àquele normalmente utilizado para a fermentação do kefir artesanal, o que caracteriza perigo em potencial para o consumidor quando a matéria-prima não apresentar segurança sanitária. Lactobacillus isolados de grãos de kefir apresentam atividade antimicrobiana contra cepas de E. coli O157:H7, Salmonella sorotipos Typhimurium e Enteritidis, S. aureus e L. monocytogenes além daquela exercida pela diminuição do pH.


Sign in / Sign up

Export Citation Format

Share Document