Effect of ionic strength on the heat-induced soy protein aggregation and the phase separation of soy protein aggregate/dextran mixtures

2009 ◽  
Vol 23 (3) ◽  
pp. 1015-1023 ◽  
Author(s):  
Xianghong Li ◽  
Yunhui Cheng ◽  
Cuiping Yi ◽  
Yufei Hua ◽  
Cheng Yang ◽  
...  
2017 ◽  
Vol 8 (8) ◽  
pp. 2974-2981 ◽  
Author(s):  
Xue-Feng Zhu ◽  
Jie Zheng ◽  
Fu Liu ◽  
Chao-Ying Qiu ◽  
Wei-Feng Lin ◽  
...  

Soy protein nanoparticles as Pickering stabilizers can be induced by heating in the presence of NaCl. The Pickering emulsions with NaCl exhibited much better freeze-thaw stability than those without NaCl.


2021 ◽  
Author(s):  
Kazuki Murakami ◽  
Shinji Kajimoto ◽  
Daiki Shibata ◽  
Kunisato Kuroi ◽  
Fumihiko Fujii ◽  
...  

Liquid–liquid phase separation (LLPS) plays an important role in a variety of biological processes and is also associated with protein aggregation in neurodegenerative diseases. Quantification of LLPS is necessary to...


2021 ◽  
Vol 22 (2) ◽  
pp. 677
Author(s):  
Tausif Altamash ◽  
Wesam Ahmed ◽  
Saad Rasool ◽  
Kabir H. Biswas

Intracellular ionic strength regulates myriad cellular processes that are fundamental to cellular survival and proliferation, including protein activity, aggregation, phase separation, and cell volume. It could be altered by changes in the activity of cellular signaling pathways, such as those that impact the activity of membrane-localized ion channels or by alterations in the microenvironmental osmolarity. Therefore, there is a demand for the development of sensitive tools for real-time monitoring of intracellular ionic strength. Here, we developed a bioluminescence-based intracellular ionic strength sensing strategy using the Nano Luciferase (NanoLuc) protein that has gained tremendous utility due to its high, long-lived bioluminescence output and thermal stability. Biochemical experiments using a recombinantly purified protein showed that NanoLuc bioluminescence is dependent on the ionic strength of the reaction buffer for a wide range of ionic strength conditions. Importantly, the decrease in the NanoLuc activity observed at higher ionic strengths could be reversed by decreasing the ionic strength of the reaction, thus making it suitable for sensing intracellular ionic strength alterations. Finally, we used an mNeonGreen–NanoLuc fusion protein to successfully monitor ionic strength alterations in a ratiometric manner through independent fluorescence and bioluminescence measurements in cell lysates and live cells. We envisage that the biosensing strategy developed here for detecting alterations in intracellular ionic strength will be applicable in a wide range of experiments, including high throughput cellular signaling, ion channel functional genomics, and drug discovery.


2016 ◽  
Vol 145 (18) ◽  
pp. 185101 ◽  
Author(s):  
Ronald W. Thompson ◽  
Ramil F. Latypov ◽  
Ying Wang ◽  
Aleksey Lomakin ◽  
Julie A. Meyer ◽  
...  

2021 ◽  
Vol 13 (577) ◽  
pp. eaax0914 ◽  
Author(s):  
Jeffery W. Kelly

Pharmacological evidence, from clinical trials where patients with systemic amyloid diseases are treated with disease-modifying therapies, supports the notion that protein aggregation drives tissue degeneration in these disorders. The protein aggregate structures driving tissue pathology and the commonalities in etiology between these diseases and Alzheimer’s disease are under investigation.


2020 ◽  
Vol 19 (12) ◽  
pp. 1968-1985
Author(s):  
Yi Liu ◽  
Michael J. Trnka ◽  
Shenheng Guan ◽  
Doyoung Kwon ◽  
Do-Hyung Kim ◽  
...  

Mallory-Denk-bodies (MDBs) are hepatic protein aggregates associated with inflammation both clinically and in MDB-inducing models. Similar protein aggregation in neurodegenerative diseases also triggers inflammation and NF-κB activation. However, the precise mechanism that links protein aggregation to NF-κB-activation and inflammatory response remains unclear. Herein we find that treating primary hepatocytes with MDB-inducing agents (N-methylprotoporphyrin (NMPP), protoporphyrin IX (PPIX), or Zinc-protoporphyrin IX (ZnPP)) elicited an IκBα-loss with consequent NF-κB activation. Four known mechanisms of IκBα-loss i.e. the canonical ubiquitin-dependent proteasomal degradation (UPD), autophagic-lysosomal degradation, calpain degradation and translational inhibition, were all probed and excluded. Immunofluorescence analyses of ZnPP-treated cells coupled with 8 M urea/CHAPS-extraction revealed that this IκBα-loss was due to its sequestration along with IκBβ into insoluble aggregates, thereby releasing NF-κB. Through affinity pulldown, proximity biotinylation by antibody recognition, and other proteomic analyses, we verified that NF-κB subunit p65, which stably interacts with IκBα under normal conditions, no longer binds to it upon ZnPP-treatment. Additionally, we identified 10 proteins that interact with IκBα under baseline conditions, aggregate upon ZnPP-treatment, and maintain the interaction with IκBα after ZnPP-treatment, either by cosequestering into insoluble aggregates or through a different mechanism. Of these 10 proteins, the nucleoporins Nup153 and Nup358/RanBP2 were identified through RNA-interference, as mediators of IκBα-nuclear import. The concurrent aggregation of IκBα, NUP153, and RanBP2 upon ZnPP-treatment, synergistically precluded the nuclear entry of IκBα and its consequent binding and termination of NF-κB activation. This novel mechanism may account for the protein aggregate-induced inflammation observed in liver diseases, thus identifying novel targets for therapeutic intervention. Because of inherent commonalities this MDB cell model is a bona fide protoporphyric model, making these findings equally relevant to the liver inflammation associated with clinical protoporphyria.


2012 ◽  
Vol 28 (2) ◽  
pp. 333-343 ◽  
Author(s):  
J.-L. Mession ◽  
A. Assifaoui ◽  
C. Lafarge ◽  
R. Saurel ◽  
P. Cayot

2013 ◽  
Vol 61 (16) ◽  
pp. 3934-3940 ◽  
Author(s):  
Die Dong ◽  
Yufei Hua ◽  
Yeming Chen ◽  
Xiangzhen Kong ◽  
Caimeng Zhang ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document