Introduction of primary antioxidant activity to chitosan for application as a multifunctional food packaging material

2013 ◽  
Vol 33 (2) ◽  
pp. 207-214 ◽  
Author(s):  
Stephanie B. Schreiber ◽  
Joseph J. Bozell ◽  
Douglas G. Hayes ◽  
Svetlana Zivanovic
Molecules ◽  
2021 ◽  
Vol 26 (13) ◽  
pp. 3898
Author(s):  
Surakshi Wimangika Rajapaksha ◽  
Naoto Shimizu

Antioxidant polyphenols in black tea residue are an underused source of bioactive compounds. Microencapsulation can turn them into a valuable functional ingredient for different food applications. This study investigated the potential of using spent black tea extract (SBT) as an active ingredient in food packaging. Free or microencapsulated forms of SBT, using a pectin–sodium caseinate mixture as a wall material, were incorporated in a cassava starch matrix and films developed by casting. The effect of incorporating SBT at different polyphenol contents (0.17% and 0.34%) on the structural, physical, and antioxidant properties of the films, the migration of active compounds into different food simulants and their performance at preventing lipid oxidation were evaluated. The results showed that adding free SBT modified the film structure by forming hydrogen bonds with starch, creating a less elastic film with antioxidant activity (173 and 587 µg(GAE)/g film). Incorporating microencapsulated SBT improved the mechanical properties of active films and preserved their antioxidant activity (276 and 627 µg(GAE)/g film). Encapsulates significantly enhanced the release of antioxidant polyphenols into both aqueous and fatty food simulants. Both types of active film exhibited better barrier properties against UV light and water vapour than the control starch film and delayed lipid oxidation up to 35 d. This study revealed that starch film incorporating microencapsulated SBT can be used as a functional food packaging to protect fatty foods from oxidation.


Coatings ◽  
2021 ◽  
Vol 11 (5) ◽  
pp. 604
Author(s):  
Liyan Wang ◽  
Liang Lei ◽  
Kang Wan ◽  
Yuan Fu ◽  
Hewen Hu

Active films based on carboxymethyl chitosan incorporated corn peptide were developed, and the effect of the concentration of corn peptide on films was evaluated. Physicochemical properties of the films, including thickness, opacity, moisture content, color, mechanical properties, water vapor permeability, and oil resistance, were measured. Biological activities of the films, including the antioxidant and antibacterial activities, were characterized in terms of 2, 2-diphenyl-1-picrylhydrazyl free radical scavenging activity, reducing power, the total antioxidant activity, and the filter disc inhibition zone method. The results indicated that the incorporation of corn peptide caused interactions between carboxymethyl chitosan and corn peptide in Maillard reaction and gave rise to the films light yellow appearance. Compared with the Control, the degree of glycosylation, browning intensity, thickness, opacity, tensile strength, antioxidant activity, and antibacterial activity of films were increased, but the elongation, vapor permeability, and oil resistance of films were decreased. The films based on corn peptide and carboxymethyl chitosan can potentially be applied to food packaging.


2017 ◽  
Vol 43 ◽  
pp. 216-222 ◽  
Author(s):  
Jen-Yi Huang ◽  
Janelle Limqueco ◽  
Yu Yuan Chieng ◽  
Xu Li ◽  
Weibiao Zhou

2017 ◽  
pp. 139-154
Author(s):  
Khalid Gul ◽  
Haroon Wani ◽  
Preeti Singh ◽  
Idrees Wani ◽  
Ali Wani

2019 ◽  
Vol 25 (4) ◽  
pp. 506-514 ◽  
Author(s):  
Himanshu Gupta ◽  
Harish Kumar ◽  
Mohit Kumar ◽  
Avneesh Kumar Gehlaut ◽  
Ankur Gaur ◽  
...  

The current study stresses on the reuse of waste lignocellulose biomass (rice husk and sugarcane bagasse) for the synthesis of carboxymethyl cellulose (CMC) and further conversion of this CMC into a biodegradable film. Addition of commercial starch was done to form biodegradable film due to its capacity to form a continuous matrix. Plasticizers such as Glycerol and citric acid were used to provide flexibility and strength to the film. Biopolymer film obtained from sugarcane bagasse CMC showed maximum tensile strength and elongation in comparison to the film synthesized from commercial CMC and CMC obtained from rice husk. It has been observed that an increase in sodium glycolate/NaCl content in CMC imposed an adverse effect on tensile strength. Opacity, moisture content, and solubility of the film increased with a rise in the degree of substitution of CMC. Therefore, CMC obtained from sugarcane bagasse was better candidate in preparing biopolymer/biocomposite film.


2021 ◽  
pp. 82-92
Author(s):  
Srishti Tripathi ◽  
Sunita Mishra

The present study aimed to evaluate the antibacterial, antioxidant activity of pectin extracted from banana peel. Antibacterial activity was investigated against Staphylococcus aureus, Escherichia coli, and Salmonella Enteritidis. The well diffusion method was used to assess the antibacterial effect of the pectin extract on microorganisms. The extract showed maximum activity against Staphylococcus aureus (19.6 mm). The total phenolic content and flavonoid content in the examined extract found to be 3883.6 mgGA/g and 903.03 mg QE/gm on a dry matter basis. Antioxidant activity is analyzed using in vitro Standard spectrophotometer methods. Pectin extract increases DPPH scavenging activity up to 75 µg/ml of concentration. The innovation in food packaging by the use of pectin-based edible coatings is reviewed in this paper. Thereafter, coating of pectin was done in mozzarella cheese and its shelf life was studied at 1, 7,14,21, and 28 days of storage at 5˚C. It was analyzed that pectin coating over mozzarella cheese increases their shelf life from 7 to 21 days. Thus, pectin is a natural polysaccharide that attracts interest for maintaining and improving the quality of cheese. Also, it minimizes the waste that occurs from non-biodegradable packaging materials and helps the environment to be safe. This research was carried out at the laboratory of Food Science analysis Laboratory, Babasaheb Bhimrao Ambedkar University, Lucknow (INDIA) between February 21-April 21.


In this study, intelligent food packaging in the forms of film and coating were developed based on starch, chitosan and curcumin extracted from turmeric. Solution casting method was applied to develop the film. Both of the film and coating were evaluated and compared by their chemical, physical and biological properties. The film was evaluated in terms of tensile strength measurement, FTIR spectroscopy, antioxidant activity and antimicrobial activity as well as color difference parameters after application on the strawberry. The results obtained showed that the film has a tensile strength of 1.37 MPa, elongation at break of 18.9%, antioxidant activity of 95.65% and high antimicrobial activity as the film had successfully delayed the formation of mould on the strawberry after 5 days of storage. In addition, the stability of both film and coating were evaluated based on their applications on strawberries at two different conditions which are at room temperature and chiller temperature during 5 days storage to identify their potential use as intelligent food packaging. After 5 days, it was found that the film at room temperature had been partially degraded and the coating had caused colour degradation and texture deterioration of the strawberry. In contrast, the film and coating stored at chiller temperature remained the same in terms of physical structure and able to monitor and extend the shelf life of the strawberry. For the evaluation of the film as pH sensing film, the colour of the film changed after 5 days from 53.46 to 48.92 for L*, 26.01 to 22.68 for a* and 42.49 to 44.65 for b* at chiller temperature, while at room temperature, the values of L* changed from 53.96 to 48.96, 25.54 to 20.36 for a* and 46.34 to 44.10 for b*. These showed that the film was able to monitor the freshness of the strawberry by changing its colour in respond to pH changes of the strawberry. The results obtained revealed that both of the film and coating have a greater stability at chiller temperature as compared to storage at room temperature and both have a strong antioxidant activity and strong antimicrobial activity that they delayed the spoilage of the strawberries. Therefore, the film and coating based on starch, chitosan and curcumin can be used to monitor freshness of refrigerated food and have the potential to be used as intelligent food packaging


Sign in / Sign up

Export Citation Format

Share Document