The stability of triphasic oil-in-water Pickering emulsions can be improved by physical modification of hordein- and secalin-based submicron particles

2019 ◽  
Vol 89 ◽  
pp. 649-660 ◽  
Author(s):  
Sareh Boostani ◽  
Seyed Mohammad Hashem Hosseini ◽  
Gholamhossein Yousefi ◽  
Masoud Riazi ◽  
Ali-Mohammad Tamaddon ◽  
...  
2013 ◽  
Vol 319 ◽  
pp. 233-238 ◽  
Author(s):  
De Hai Yu ◽  
Zhao Yun Lin ◽  
You Ming Li

Octadecenylsuccinic anhydride (ODSA) is an internal sizing agent used to hydrophobize paper and paper board in the process of papermaking. Nano-montmorillonite (MMT) particles and n-dodecane were used as the stabilizer to prepare stable ODSA Pickering emulsions. The effects of pH value, particle concentration, hydrolysis resistance and paper sizing performance of the ODSA Pickering emulsions were investigated. It was found that the stability of ODSA emulsions first increased and then decreased as the pH value decreased. More stable oil-in-water (o/w) emulsion can be made using 10 vol.% n-dodecane. Particle concentration was linked to the formation of particle films at oil–water interface, with a required minimum particle concentration of 1.5 wt.%. Paper sizing degree analysis indicated that the ODSA Pickering emulsions show increased hydrolysis resistance and good sizing performance.


2020 ◽  
Vol 10 (1) ◽  
Author(s):  
Hui Yang ◽  
Shujuan Wang ◽  
Wei Zhang ◽  
Jiazhong Wu ◽  
Siyu Yang ◽  
...  

Abstract Pickering emulsions with on–off properties provide significant advantages over simple solid-stabilized emulsions for the development of novel materials, such as oil-displacing agents for enhanced oil recovery and templates for the fabrication of porous materials. However, the irreversible adsorption of particles as emulsion stabilizers endows the Pickering emulsions with kinetically stable property, resulting in a huge challenge to break the stability. Here we fabricated microscale Pickering emulsions, by the use of paramagnetic particles, which possess excellent stability for several months and more interestingly perform complete demulsification under controllable magnetic fields in several minutes. The alternating asymmetrical magnetic field endows oil-in-water droplets ‘‘big’’ N and S poles on the outer particle layers, and attracts the solid particles to the bottom of the vial after the coalescence and the deformation of the droplets, bringing the prevention of re-emulsion and the cyclic utilization. This facile strategy to produce stable Pickering emulsions with a magnetic-response opens a promising avenue for various practical applications including oil recovery, wastewater treatment, and sludge removal.


2021 ◽  
Vol 9 ◽  
Author(s):  
Liliya Kotliarevski ◽  
Karthik Ananth Mani ◽  
Reut Amar Feldbaum ◽  
Noga Yaakov ◽  
Eduard Belausov ◽  
...  

This study presents an individual encapsulation of fungal conidia in an oil-in-water Pickering emulsion at a single-conidium encapsulation yield of 44%. The single-conidium encapsulation yield was characterized by analysis of confocal microscopy micrographs. Mineral oil-in-water emulsions stabilized by amine-functionalized titania dioxide (TiO2-NH2 or titania-NH2) particles were prepared. The structure and the stability of the emulsions were investigated at different compositions by confocal microscopy and a LUMiSizer® respectively. The most stable emulsions with a droplet size suitable for single-conidium encapsulation were further studied for their individual encapsulation capabilities. The yields of individual encapsulation in the emulsions; i.e., the number of conidia that were individually encapsulated out of the total number of conidia, were characterized by confocal microscopy assay. This rapid, easy to use approach to single-conidium encapsulation, which generates a significantly high yield with eco-friendly titania-based emulsions, only requires commonly used emulsification and agitation methods.


Author(s):  
E.-M. Varka ◽  
C. Ampatzidis ◽  
M. Kostoglou ◽  
T. Karapantsios ◽  
V. Dutschk

2019 ◽  
Vol 9 (19) ◽  
pp. 4044 ◽  
Author(s):  
Upinder Bains ◽  
Rajinder Pal

An in-situ method of measuring the viscosity of unstable and stable emulsions on a continuous basis under agitation conditions was developed and utilized to investigate the viscous behaviour of surfactant-stabilized and nanoparticles-stabilized oil-in-water (O/W) emulsions at different volume fractions of the dispersed phase (oil). The stability characteristics (droplet size and phase-separation) of emulsions under quiescent conditions were also determined with the aging of emulsions. Emulsions are Newtonian at low volume fractions of the dispersed phase. At high concentrations of the dispersed phase, emulsions behave as non-Newtonian shear-thinning fluids. The nanoparticles-stabilized (Pickering) emulsions are unstable in comparison with the surfactant-stabilized emulsions. The droplet sizes of Pickering emulsions increase rapidly with aging, whereas the droplet sizes of surfactant-stabilized remain nearly the same over a period of 24 h. However, Pickering emulsions are much more viscous than the surfactant-stabilized emulsions when comparison is made at the same volume fraction of the dispersed phase.


Polymers ◽  
2021 ◽  
Vol 13 (14) ◽  
pp. 2301
Author(s):  
Man Zhang ◽  
Bin Liang ◽  
Hongjun He ◽  
Changjian Ji ◽  
Tingting Cui ◽  
...  

Appropriate pretreatment of proteins and addition of xanthan gum (XG) has the potential to improve the stability of oil-in-water (O/W) emulsions. However, the factors that regulate the enhancement and the mechanism are still not clear, which restricts the realization of improving the emulsion stability by directional design of its structure. Therefore, the effects of whey protein micro-gel particles (WPMPs) and WPMPs-XG complexes on the stability of O/W emulsion were investigated in this article to provide theoretical support. WPMPs with different structures were prepared by pretreatment (controlled high-speed shear treatment of heat-set WPC gels) at pH 3.5–8.5. The impact of initial WPC structure and XG addition on Turbiscan Indexes, mean droplet size and the peroxide values of O/W emulsions was investigated. The results indicate that WPMPs and XG can respectively inhibit droplet coalescence and gravitational separation to improve the physical stability of WPC-stabilized O/W emulsions. The pretreatment significantly enhanced the oxidative stability of WPC-stabilized O/W emulsions. The addition of XG did not necessarily enhance the oxidative stability of O/W emulsions. Whether the oxidative stability of the O/W emulsion with XG is increased or decreased depends on the interface structure of the protein-XG complex. This study has significant implications for the development of novel structures containing lipid phases that are susceptible to oxidation.


Pharmaceutics ◽  
2021 ◽  
Vol 13 (5) ◽  
pp. 744
Author(s):  
Ijeoma F. Uchegbu ◽  
Jan Breznikar ◽  
Alessandra Zaffalon ◽  
Uche Odunze ◽  
Andreas G. Schätzlein

Commercial topical ocular formulations for hydrophobic actives rely on the use of suspensions or oil in water emulsions and neither of these formulation modalities adequately promote drug penetration into ocular tissues. Using the ocular relevant hydrophobic drug, cyclosporine A (CsA), a non-irritant ocular penetration enhancer is showcased, which may be used for the formulation of hydrophobic actives. The activity of this penetration enhancer is demonstrated in a healthy rabbit model. The Molecular Envelope Technology (MET) polymer (N-palmitoyl-N-monomethyl-N,N-dimethyl-N,N,N-trimethyl-6-O-glycolchitosan), a self-assembling, micelle-forming polymer, was used to formulate CsA into sterile filtered nanoparticulate eye drop formulations and the stability of the formulation tested. Healthy rabbits were dosed with a single dose of a MET–CsA (NM133) 0.05% formulation and ocular tissues analyzed. Optically clear NM133 formulations were prepared containing between 0.01–0.1% w/v CsA and 0.375–0.75% w/v MET polymer. NM133 0.01%, NM133 0.02% and NM133 0.05% were stable for 28 days when stored at refrigeration temperature (5–6 °C) and room temperature (16–23 °C), but there was evidence of evaporation of the formulation at 40 °C. There was no change in drug content when NM133 0.05% was stored for 387 days at 4 °C. On topical dosing to rabbits, corneal, conjunctival and scleral AUC0–24 levels were 25,780 ng.h g−1, 12,046 ng.h g−1 and 5879 ng.h g−1, respectively, with NM133 0.05%. Meanwhile, a similar dose of Restasis 0.05% yielded lower values of 4726 ng.h/g, 4813 ng.h/g and 1729 ng.h/g for the drug corneal, conjunctival and scleral levels, respectively. NM133 thus delivered up to five times more CsA to the ocular surface tissues when compared to Restasis. The MET polymer was non-irritant up to a concentration of 4% w/v. The MET polymer is a non-irritant ocular penetration enhancer that may be used to deliver hydrophobic drugs in optically clear topical ocular formulations.


2021 ◽  
Vol 114 ◽  
pp. 106562
Author(s):  
Zhongyang Ren ◽  
Zhanming Li ◽  
Zhongzheng Chen ◽  
Yuanyuan Zhang ◽  
Xiaorong Lin ◽  
...  

Foods ◽  
2021 ◽  
Vol 10 (4) ◽  
pp. 693
Author(s):  
Rubén Llinares ◽  
Pablo Ramírez ◽  
José Antonio Carmona ◽  
Luis Alfonso Trujillo-Cayado ◽  
José Muñoz

In this work, nanoemulsion-based delivery system was developed by encapsulation of fennel essential oil. A response surface methodology was used to study the influence of the processing conditions in order to obtain monomodal nanoemulsions of fennel essential oil using the microchannel homogenization technique. Results showed that it was possible to obtain nanoemulsions with very narrow monomodal distributions that were homogeneous over the whole observation period (three months) when the appropriate mechanical energy was supplied by microfluidization at 14 MPa and 12 passes. Once the optimal processing condition was established, nanoemulsions were formulated with advanced performance xanthan gum, which was used as both viscosity modifier and emulsion stabilizer. As a result, more desirable results with enhanced physical stability and rheological properties were obtained. From the study of mechanical spectra as a function of aging time, the stability of the nanoemulsions weak gels was confirmed. The mechanical spectra as a function of hydrocolloid concentration revealed that the rheological properties are marked by the biopolymer network and could be modulated depending on the amount of added gum. Therefore, this research supports the role of advanced performance xanthan gum as a stabilizer of microfluidized fennel oil-in-water nanoemulsions. In addition, the results of this research could be useful to design and formulate functional oil-in-water nanoemulsions with potential application in the food industry for the delivery of nutraceuticals and antimicrobials.


Sign in / Sign up

Export Citation Format

Share Document