Enzymatic Modification of Arabinoxylans from Soft and Hard Argentinian Wheat Inhibits the Viability of HCT-116 Cells

2021 ◽  
pp. 110466
Author(s):  
Candela Paesani ◽  
Alicia L. Degano ◽  
Zalosnik Ines ◽  
Maria Inés Zalosnik ◽  
João Paulo Fabi ◽  
...  
2021 ◽  
Vol 14 (2) ◽  
pp. 139
Author(s):  
Mohammad Azam Ansari ◽  
Sarah Mousa Maadi Asiri ◽  
Mohammad A. Alzohairy ◽  
Mohammad N. Alomary ◽  
Ahmad Almatroudi ◽  
...  

The current study demonstrates the synthesis of fatty acids (FAs) capped silver nanoparticles (AgNPs) using aqueous poly-herbal drug Liv52 extract (PLE) as a reducing, dispersing and stabilizing agent. The NPs were characterized by various techniques and used to investigate their potent antibacterial, antibiofilm, antifungal and anticancer activities. GC-MS analysis of PLE shows a total of 37 peaks for a variety of bio-actives compounds. Amongst them, n-hexadecanoic acid (21.95%), linoleic acid (20.45%), oleic acid (18.01%) and stearic acid (13.99%) were found predominately and most likely acted as reducing, stabilizing and encapsulation FAs in LIV-AgNPs formation. FTIR analysis of LIV-AgNPs shows some other functional bio-actives like proteins, sugars and alkenes in the soft PLE corona. The zone of inhibition was 10.0 ± 2.2–18.5 ± 1.0 mm, 10.5 ± 2.5–22.5 ± 1.5 mm and 13.7 ± 1.0–16.5 ± 1.2 against P. aeruginosa, S. aureus and C. albicans, respectively. LIV-AgNPs inhibit biofilm formation in a dose-dependent manner i.e., 54.4 ± 3.1%—10.12 ± 2.3% (S. aureus), 72.7 ± 2.2%–23.3 ± 5.2% (P. aeruginosa) and 85.4 ± 3.3%–25.6 ± 2.2% (C. albicans), and SEM analysis of treated planktonic cells and their biofilm biomass validated the fitness of LIV-AgNPs in future nanoantibiotics. In addition, as prepared FAs rich PLE capped AgNPs have also exhibited significant (p < 0.05 *) antiproliferative activity against cultured HCT-116 cells. Overall, this is a very first demonstration on employment of FAs rich PLE for the synthesis of highly dispersible, stable and uniform sized AgNPs and their antibacterial, antifungal, antibiofilm and anticancer efficacy.


Biomolecules ◽  
2021 ◽  
Vol 11 (3) ◽  
pp. 470
Author(s):  
Mustafa Mohsen El-Zayat ◽  
Mostafa M. Eraqi ◽  
Hani Alrefai ◽  
Ayman Y. El-Khateeb ◽  
Marwan A. Ibrahim ◽  
...  

The current work aimed to synthesize selenium and zinc nanoparticles using the aqueous extract of Ephedra aphylla as a valuable medicinal plant. The prepared nanoparticles were characterized by TEM, zeta potential, and changes in the phytochemical constituents. Hence, the phenolic, flavonoid, and tannin contents were reduced in the case of the prepared samples of nanoparticles than the original values in the aqueous extract. The prepared extract of Ephedra aphylla and its selenium and zinc nanoparticles showed high potency as antioxidant agents as a result of the DPPH• assay. The samples were assessed as anticancer agents against six tumor cells and a normal lung fibroblast (WI-38) cell line. The selenium nanoparticles of Ephedra aphylla extract revealed very strong cytotoxicity against HePG-2 cells (inhibitory concentration (IC50) = 7.56 ± 0.6 µg/mL), HCT-116 cells (IC50 = 10.02 ± 0.9 µg/mL), and HeLa cells (IC50 = 9.23 ± 0.8 µg/mL). The samples were evaluated as antimicrobial agents against bacterial and fungal strains. Thus, selenium nanoparticles showed potent activities against Gram-negative strains (Salmonella typhimurium, Pseudomonas aeruginosa, Klebsiella pneumoniae, and Escherichia coli), Gram-positive strains (Bacillus cereus, Listeria monocytogenes, Staphylococcus aureus, and Staphylococcus epidermidis), and the fungal strain Candida albicans. In conclusion, the preparation of nanoparticles of either selenium or zinc is crucial for improved biological characteristics.


Medicines ◽  
2021 ◽  
Vol 8 (6) ◽  
pp. 27
Author(s):  
Kinjal Lakhani ◽  
Edgar A. Borrego ◽  
Karla G. Cano ◽  
Jonathan R. Dimmock ◽  
Renato J. Aguilera ◽  
...  

A series of novel N2-acryloylhydrazides 1a–m and a related series of compounds 6a–c were prepared as potential chemostimulants. In general, these compounds are cytotoxic to human HCT 116 colon cancer cells, as well as human MCF-7 and MDA-MB-231 breast cancer cell lines. A representative compound N1-(3,4-dimethoxyphenylcarbonyl)-N2-acryloylhydrazine 1m sensitized HCT 116 cells to the potent antineoplastic agent 3,5-bis(benzylidene)-4-piperidone 2a, and also to 5-fluorouracil. A series of compounds was prepared that incorporated some of the molecular features of 2a and related compounds with various N2-acryloylhydrazides in series 1. These compounds are potent cytotoxins. Two modes of action of representative compounds are the lowering of mitochondrial membrane potential and increasing the concentration of reactive oxygen species.


2021 ◽  
Vol 0 (0) ◽  
Author(s):  
Elcin Ozgur ◽  
Handan Kayhan ◽  
Gorkem Kismali ◽  
Fatih Senturk ◽  
Merve Sensoz ◽  
...  

Abstract Objectives The aim of this study is to investigate the effects of radiofrequency radiation (RFR) on apoptosis, proliferation, stress response, and inflammation markers in colorectal cancer cells. Methods We tested the effects of intermittent exposure to RFR at different frequencies on two different colorectal cancer cell lines; HCT-116 and DLD-1. Protein levels were subsequently analyzed by ELISA. Results RFR led to a decrease in P53, p-P53, p-P38, and p-IkB levels in HCT-116 cells, while leading to an increase in BAD, p-BAD, p-STAT3,NF-κB levels. Two thousand one hundred Megahertz of RFR altered the P53, BAD, and NF-ΚB expression in HCT-116 cells. P53, p-P53, BAD, p-BAD, NF-κB, p-NF-κB, p-P38, p-SAPK/JNK, p-STAT3, and p-IkB levels increased after exposure to RFR at 900 and 2,100 MHz in DLD-1 cells. Unlike HCT-116 cells, 1,800 MHz of RFR was reported to have no effect on DLD1 cells. Conclusions RFR increased apoptosis and inflammatory response in HCT116 cells, while lowering the active P38 and active P53 levels, which are indicators of poor prognosis in several cancers. Genetic differences, such as P53 mutation (DLD-1), are critical to the cell response to RFR, which explains the reason why scientific studies on the effects of RFR yield contradictory results.


2013 ◽  
Vol 16 (1) ◽  
pp. 9-19 ◽  
Author(s):  
Xin Zhao ◽  
So-Young Kim ◽  
Kun-Young Park
Keyword(s):  
Hct 116 ◽  

2021 ◽  
Vol 17 (10) ◽  
pp. 1939-1950
Author(s):  
Beibei Lin ◽  
Xuegu Xu ◽  
Xiaobi Zhang ◽  
Yinfei Yu ◽  
Xiaoling Wang

We prepared poly(lactide-co-glycolide) (PLGA) encapsulated with chlorin e6 (Ce6) in an effort to increase the stability and efficiency of photosensitizers for photodynamic therapy (PDT). We determined that Ce6-loaded PLGA nanoparticles (PLGA-Ce6 NPs) had drug-loading efficiency of 5%. The efficiency of encapsulation was 82%, the zeta potential was- 25 mV, and the average diameter was 130 nm. The encapsulation of Ce6 in PLGA nanoparticles showed excellent stability. The nanoparticles exhibited sustained Ce6 release profiles with 50% released at the end of 3 days, whereas free Ce6 showed rapid release within 1 day. Ce6 release patterns were controlled by encapsulation into PLGA. The uptake of PLGA-Ce6 NPs was significantly enhanced by endocytosis in the first 8 hours in the HCT-116 cell line. An intracellular reactive oxygen species assay revealed the enhanced uptake of the nanoparticles. An in vitro anti-tumor activity assay showed that the PLGA-Ce6 NPs exhibited enhanced phototoxicity toward HCT-116 cells and a slightly lower IC50 value in HCT-116 cells than Ce6 solution alone. Exposure of HCT-116 cell spheroids to PLGA-Ce6 NPs penetrated more profoundly and had better phototoxicity than pure drugs. These findings suggest that PLGA-Ce6 NPs might serve as PDT for colorectal cancer.


Author(s):  
Rohina Bashir ◽  
Ovais Ahmad Zargar ◽  
Abid Hamid Dar ◽  
Nalli Yedukondalu ◽  
Qazi Parvaiz ◽  
...  
Keyword(s):  
Hct 116 ◽  

2021 ◽  
Vol 2021 ◽  
pp. 1-18
Author(s):  
Razieh Dehghan ◽  
Fatemeh Bahreini ◽  
Rezvan Najafi ◽  
Massoud Saidijam ◽  
Razieh Amini

Objectives. Chemotherapy is considered to be essential in the treatment of patients with colorectal cancer (CRC), but drug resistance reduces its efficacy. Many patients with advanced CRC eventually show resistance to 5-fluorouracil (5-FU) therapy. Synergistic and potentiating effects of combination therapy, using herbal and chemical drugs, can improve patients’ response. Zerumbone (ZER), which is derived from ginger, has been studied for its growth inhibitory function in various types of cancer. Methods. The cytotoxic effects of ZER and 5-FU alone and their combination, on the SW48 and HCT-116 cells, were examined, using the 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyl tetrazolium bromide (MTT). The mRNA and protein levels of β-catenin, survivin, and vimentin were measured in treated CRC cells, using qRT-PCR and western blot. Colony formation assay, scratch test, and flow cytometry were performed to detect the changes of proliferation, migration, and apoptosis. Key Findings. In HCT-116- and SW48-treated cells, the proliferation, the gene and protein expression levels of the markers, the migration, the colony formation, and the survival rates were all significantly reduced compared to the control groups, and the sharpest decline was observed in the 5-FU+ZER treatment groups. Conclusions. Combination therapy has shown promising results in CRC cells, especially in drug-resistant cells.


Sign in / Sign up

Export Citation Format

Share Document