Lipid digestibility and bioaccessibility of a high dairy fat meal is altered when consumed with whole apples: Investigations using static and dynamic in vitro digestion models

2021 ◽  
Vol 28 ◽  
pp. 100191
Author(s):  
Xinjie Lin ◽  
Peter X. Chen ◽  
Lindsay E. Robinson ◽  
Michael A. Rogers ◽  
Amanda J. Wright
Foods ◽  
2020 ◽  
Vol 9 (6) ◽  
pp. 796
Author(s):  
Maria Espert ◽  
Teresa Sanz ◽  
Ana Salvador

This study investigated the texture properties and fat digestibility of new spreadable chocolate creams formulated with an emulsion composed of milk fat and a cellulose ether as a fat source. The spreadability was analysed at 20 °C and compared with a commercial spreadable cream formulated with palm fat. Structural changes in the creams after the in vitro oral and gastric digestion stages were evaluated; lipid digestibility was determined by titration with NaOH during intestinal digestion. Spreadability tests showed the spreads were similar. After oral digestion, the commercial spread showed an increase in extrusion force because of flocculation induced by saliva, an effect not observed in spreads with cellulose ether. Digestibility determination showed lower values for the reformulated spreads. Therefore, milk fat-cellulose ether based emulsions offer an alternative to achieve reformulated spreadable creams, with physical properties similar to those of commercial products but providing reduced fat content and lower lipid digestibility, without compromising the quality of the final product.


Foods ◽  
2021 ◽  
Vol 10 (8) ◽  
pp. 1781
Author(s):  
Santiago Bascuas ◽  
Pere Morell ◽  
Amparo Quiles ◽  
Ana Salvador ◽  
Isabel Hernando

Bakery products are usually formulated with solid fats, like margarines and shortenings, which contain high levels of saturated and trans-fatty acids and have negative effects on human health. In this study, hydroxypropyl methylcellulose (HPMC) and xanthan gum (XG) were used as oleogelators to prepare oleogels, using sunflower and olive oil, as substitutes for margarine in baked or steamed buns. The effect of oleogels on the physical properties of the buns was evaluated by analyzing the crumb structure, specific volume, height, and texture. In addition, a triangular discriminatory sensory test was conducted, and lipid digestibility was assessed through in vitro digestion studies. Replacement of margarine with oleogels produced steamed buns with no differences in the crumb structure, volume, height, and texture; however, in baked buns, a less porous and harder structure was produced. No differences in texture were observed between the margarine buns and buns made with oleogels when the triangular test was conducted. The extent of lipolysis was not affected when margarine was replaced by oleogels in the baked and steamed buns. The results suggest that using oleogels instead of margarine in buns could represent an interesting strategy to prepare healthier bakery products.


2020 ◽  
Vol 328 ◽  
pp. 127126 ◽  
Author(s):  
Stefano Nebbia ◽  
Marzia Giribaldi ◽  
Laura Cavallarin ◽  
Enrico Bertino ◽  
Alessandra Coscia ◽  
...  

2019 ◽  
Vol 141 ◽  
pp. 240-246 ◽  
Author(s):  
Hui Zhang ◽  
Zhi Li ◽  
Yanjun Tian ◽  
Zibo Song ◽  
Lianzhong Ai

Nutrients ◽  
2021 ◽  
Vol 13 (2) ◽  
pp. 410 ◽  
Author(s):  
Kristine Bach Korsholm Knudsen ◽  
Christine Heerup ◽  
Tine Røngaard Stange Jensen ◽  
Xiaolu Geng ◽  
Nikolaj Drachmann ◽  
...  

Efficient lipid digestion in formula-fed infants is required to ensure the availability of fatty acids for normal organ development. Previous studies suggest that the efficiency of lipid digestion may depend on whether lipids are emulsified with soy lecithin or fractions derived from bovine milk. This study, therefore, aimed to determine whether emulsification with bovine milk-derived emulsifiers or soy lecithin (SL) influenced lipid digestion in vitro and in vivo. Lipid digestibility was determined in vitro in oil-in-water emulsions using four different milk-derived emulsifiers or SL, and the ultrastructural appearance of the emulsions was assessed using electron microscopy. Subsequently, selected emulsions were added to a base diet and fed to preterm neonatal piglets. Initially, preterm pigs equipped with an ileostomy were fed experimental formulas for seven days and stoma output was collected quantitatively. Next, lipid absorption kinetics was studied in preterm pigs given pure emulsions. Finally, complete formulas with different emulsions were fed for four days, and the post-bolus plasma triglyceride level was determined. Milk-derived emulsifiers (containing protein and phospholipids from milk fat globule membranes and extracellular vesicles) showed increased effects on fat digestion compared to SL in an in vitro digestion model. Further, milk-derived emulsifiers significantly increased the digestion of triglyceride in the preterm piglet model compared with SL. Ultra-structural images indicated a more regular and smooth surface of fat droplets emulsified with milk-derived emulsifiers relative to SL. We conclude that, relative to SL, milk-derived emulsifiers lead to a different surface ultrastructure on the lipid droplets, and increase lipid digestion.


2021 ◽  
Vol 140 ◽  
pp. 110054
Author(s):  
Pablo Gallego-Lobillo ◽  
Alvaro Ferreira-Lazarte ◽  
Oswaldo Hernández-Hernández ◽  
Mar Villamiel

2021 ◽  
Vol 350 ◽  
pp. 129246
Author(s):  
Serena Martini ◽  
Alice Cattivelli ◽  
Angela Conte ◽  
Davide Tagliazucchi

Sign in / Sign up

Export Citation Format

Share Document