Durability of biomass fly ash concrete: Freezing and thawing and rapid chloride permeability tests

Fuel ◽  
2008 ◽  
Vol 87 (3) ◽  
pp. 359-364 ◽  
Author(s):  
S WANG ◽  
E LLAMAZOS ◽  
L BAXTER ◽  
F FONSECA
2012 ◽  
Vol 174-177 ◽  
pp. 380-383 ◽  
Author(s):  
Hong Zhu Quan

The paper presents the results of series of experimental studies on effects of the type and replacement ratio of fly ash to portland cement on durability of concrete. Specimens made from 28 mixes of fly ash concrete with water binder ratio of 38% to 60% and with replacement ratio of fly ash of 25% to 70% and 5 mixes of portland cement concrete with water cement ratio of 38% to 75% were tested for compressive strengths, drying shrinkage, carbonation and resistance to freezing and thawing. As a results, drying shringkage decreased with fly ash addition regardless of type and replacement ratio of fly ash. Carbonation increased with fly ash replacement ratio, and type 1 fly ash showed higher carbonation. Type 1 and tpye 2 fly ashes showed practically no change in durability factor after 300 cycles of freezing and thawing up to 55% replacement, while type 4 fly ash showed rapid reduction in durability factor up to 40% replacement ratio.


1987 ◽  
Vol 14 (5) ◽  
pp. 614-620 ◽  
Author(s):  
P. M. Gifford ◽  
B. W. Langan ◽  
R. L. Day ◽  
R. C. Joshi ◽  
M. A. Ward

It has been assumed that cement – fly ash systems only work efficiently given full curing; low temperatures and (or) moisture loss may lead to poor (slow) strenght development and concomitant reduced freezing and thawing cycling and scaling performance.The aim of the present study, undertaken by the Calgary Fly Ash Research Group, was to examine the validity of the above assumption. Strength development and freezing and thawing durability characteristics of fly ash concretes subjected to a range of environmental variables are reported; laboratory and field tests were performed. The field study involved a coring and laboratory testing programme on three ready-mixed concretes, which were used to machine place 200 m of standard curb and gutter on a major roadway. In the laboratory programme the field concretes and an additional high fly ash mixture were cast; specimens were demoulded at the age of 4 h and were either sealed at the time of casting or allowed to dry out while curing at room temperature or at 5 °C. Strength development, freezing and thawing effects, and scaling resistance as well as air-void parameters were determined; a comparison between the field and laboratory tests is presented. Also reported are measurements of internal concrete temperature and moisture loss versus time for the different curing regimes of the laboratory specimens. Key words: concrete, fly ash, strength, durability, field trial.


2019 ◽  
Vol 8 (4) ◽  
pp. 8831-8836

This paper discusses on Rapid Chloride Permeability Test investigations on penetration of chloride ions included with replacement of cement by flyash material. By weigth of cement, the fly ash content is replaced from 0% to 60%. Concrete mixes with different binder content varies from 350, 400 and 450 kg/m3 were proportioned with different water binder(w/b) ratios = 0.4, 0.45 and 0.50. Specimens were casted and tested for 28 days. For all the combinations, RCPT was carried out and the charge passed through the specimens was noted. Rapid Chloride Permeability Test value of concrete without fly ash was found to be more than the concrete with fly ash. The Rapid Chloride Permeability Test values are found to be decreased if the percentage of flyash increases. The reason could be the pozzolanic reaction products (CSH) fill the pores between the cement pastes and cause a denser concrete matrix, resulting in better durability. Hence, it can be suggested that the fly ash concrete up to 50% replacement can be used for variety of applications.


Author(s):  
Ali Hemmati ◽  
Heydar Arab

Fly ash is a supplementary cement material using instead of Portland cement in concrete. Using this material concludes to less emission of greenhouse gas and less water demand of concrete. In this paper, an experimental investigation was carried out on compressive stress–strain behavior of three groups of concrete specimens with different water/cement ratios (0.45, 0.5 and 0.55), containing 0, 10, 20, 30 and 40 percent of fly ash (by weight), after subjecting to freezing and thawing cycles. 0, 45, 100 and 150 cycles of freezing and thawing were applied on these specimens according to ASTM C666 and the results presented. Numerical models for the stress–strain behavior of these frozen-thawed concrete were developed and compared with the available experimental data. Results show that the maximum compressive strength of these concrete specimens exposing cycles of freezing and thawing is gained by using about 10 % of fly ash. Moreover, there is a good agreement between the proposed models and test results and the difference is less than 5 %.


2011 ◽  
Vol 25 (31) ◽  
pp. 4307-4310 ◽  
Author(s):  
TAKESHI WATANABE ◽  
YUKI FUJIWARA ◽  
CHIKANORI HASHIMOTO ◽  
KEISUKE ISHIMARU

Self-healing effect is widely known in concrete. It was reported that concrete with fly ash has self healing effect against freezing and thawing damage. Fly ash is one of the popular admixtures as a waste material from coal fired power plant. In this study, main purpose is to evaluate self healing effect of fly ash concrete by ultrasonic test method. In experiment, fly ash replaced 5 and 15 % of unit sand content. To damage fly ash concrete specimens, one of the freezing and thawing test produced by our laboratory were performed. After the test, the fly-ash concrete specimens are cured by water and performed ultrasonic test. In the ultrasonic test, wave forms are detected and wave velocity and ratio of relative dynamic modulus of elasticity are calculated. It is widely known that wave velocity of damaged concrete is slower than sound concrete and dynamic modulus is used for evaluate of damage. As a result, it is recognized that these fly-ash concrete specimens has self healing effect. In addition, in order to investigate curing effect of concrete against freezing and thawing damage, ultrasonic test method is powerful method of nondestructive test.


2012 ◽  
Vol 174-177 ◽  
pp. 657-661
Author(s):  
Jing Liang Xia ◽  
Zhuan Qin Wu ◽  
Ren Jie Shang ◽  
Bei Xing Li ◽  
Fang Xin Jiang ◽  
...  

Based on durability of fly ash concrete, the freezing and thawing, impermeability and cracking resistance of fly ash concrete were researched. The results show that the frost resistance of concrete was reduced, impermeability and crack resistance were improved with increasing the fly ash content.


2020 ◽  
Author(s):  
◽  
Eman Elhadi Elbuaishi

The environmental concerns of carbon emissions by the energy industry have led to a change in the way energy is generated as the UK moves to a low carbon future. While biomass combustion is gaining attraction as the most available renewable energy source, the resulting ash is most often landfilled and is still not accepted in the concrete industry as in the case of coal fly ash. This is mainly because of the limited knowledge of the in-service life of concrete made with this fly ash. This research investigates the use of two types of wood biomass fly ash, obtained from two power plants in the UK, in cement and concrete production to provide a performance-based database for evaluating its utilization in the concrete industry. The study comprises of three parts, the first part deals with determining the chemical, mineralogical and physical properties of these two fly ashes enhanced biomass ash (EBA) and virgin wood biomass ash (WBA). The results show that EBA has a chemical composition more similar to coal fly ash (CFA) than WBA and EBA satisfies the BS EN 450-1 requirements for the main oxides and other chemical components. The mineralogical structure of both ashes is mainly amorphous; EBA particles are mainly spherical whereas the morphology of WBA particles is fibrous irregular in shape and size. WBA has a higher surface area than both EBA and CFA while its pozzolanic reactivity is less. The mechanical and durability properties investigated in parts 2 and 3 are related to these characteristics (e.g., chemical compositions, pozzolanic reactivity and particle size) and also to pore properties investigated in part 2. Part 2 of this study is concerned with the effect of both ashes on the fresh and hardened properties of concrete compared to coal fly ash. Blended fly ash pastes and mortars substituting the cement at 10, 20 and 30% were produced and numerous tests were performed. The results show that the incorporation of EBA reduces the water demand and improves the workability similar to the effect of coal fly ash while the behavior of WBA is the opposite. The coarse and high surface area of WBA particles contributes to its higher water demand. The early age hydration behavior of EBA is quite similar to CFA. The CFA and EBA mixes release considerably higher heat than WBA mixes, indicating a higher rate of hydration. The compressive and flexural strength decreases gradually as the percentage of both EBA and WBA in the mix increases. The compressive strength of CFA mixes is higher than EBA mixes while WBA mixes give the lowest strength. The incorporation of EBA and WBA increases the total porosity of cement pastes. Part 3 investigates the durability properties of enhanced biomass fly ash concrete by exposing it to long-term sulphate, chloride and carbon dioxide environments which are substances that cause deterioration and damage to concrete structures. Durability properties were tested under laboratory conditions over a period of one year and control samples of ordinary OPC concrete and coal fly ash concrete were produced for comparison. Generally, enhanced biomass fly ash concrete shows better durability properties than OPC concrete except for the carbonation resistance. The depth of carbonation of enhanced biomass fly ash concrete is higher than OPC concrete but less than coal fly ash concrete which shows the highest carbonation depth. The results also show that the incorporation of enhanced biomass fly ash improves the sulphate resistance compared to control OPC, however, it is still less effective than coal fly ash in resisting sulphate attack. The chemically and physically bound chloride of enhanced biomass fly ash concrete is lower than OPC concrete but it is higher than coal fly ash concrete. The efficiency of both enhanced biomass fly ash and virgin wood biomass ash in mitigating alkalisilica reaction was also examined based on the accelerated mortar bar test. The results show that enhanced biomass fly ash reduced the expansion caused by ASR to the low-risk level of deterioration according to ASTM C1260/1576 standards whereas the reduction of expansion in the case of virgin wood biomass ash was not sufficient to reduce the risk from potentially deleterious level to low risk.


Sign in / Sign up

Export Citation Format

Share Document