Effects of raw material particle size distribution on the characteristics of Scots pine sawdust fuel pellets

2008 ◽  
Vol 89 (12) ◽  
pp. 1324-1329 ◽  
Author(s):  
Dan Bergström ◽  
Samuel Israelsson ◽  
Marcus Öhman ◽  
Sten-Axel Dahlqvist ◽  
Rolf Gref ◽  
...  
2017 ◽  
Vol 898 ◽  
pp. 1717-1723 ◽  
Author(s):  
Xue Mei Yi ◽  
Shota Suzuki ◽  
Xiong Zhang Liu ◽  
Ran Guo ◽  
Tomohiro Akiyama

Combustion synthesis (CS) of β-SiAlON was conducted using a 3D ball mill, with a focus on the effect of the 2D/3D ball mill premixing conditions on the CS raw material particle size as well as on the yield and grain shape of the final products. The results showed that the particle size distribution of the raw materials was significantly affected by the premixing conditions. Various particle sizes and particle size distributions could easily be obtained by using a 3D mill instead of a 2D mill due to the complex biaxial rotation movement of 3D milling. The particle size was more sensitive to the rotation ratio (vertical spin/horizontal spin, Vv/Vh) than the rotation rate when using 3D milling. Finally, β-SiAlON with less than 5 mass% unreacted Si was obtained using premix milling conditions of 135×200 [vertical spin (rpm) × horizontal spin (rpm)]. The grain shapes of the final products were clearly influenced by the particle size distribution of the raw mixtures.


2022 ◽  
pp. 1-15
Author(s):  
Lu Lee ◽  
Arash Dahi Taleghani

Summary Lost circulation materials (LCMs) are essential to combat fluid loss while drilling and may put the whole operation at risk if a proper LCM design is not used. The focus of this research is understanding the function of LCMs in sealing fractures to reduce fluid loss. One important consideration in the success of fracture sealing is the particle-size distribution (PSD) of LCMs. Various studies have suggested different guidelines for obtaining the best size distribution of LCMs for effective fracture sealing based on limited laboratory experiments or field observations. Hence, there is a need for sophisticated numerical methods to improve the LCM design by providing some predictive capabilities. In this study, computational fluid dynamics (CFD) and discrete element methods (DEM) numerical simulations are coupled to investigate the influence of PSD of granular LCMs on fracture sealing. Dimensionless variables were introduced to compare cases with different PSDs. We validated the CFD-DEM model in reproducing specific laboratory observations of fracture-sealing experiments within the model boundary parameters. Our simulations suggested that a bimodally distributed blend would be the most effective design in comparison to other PSDs tested here.


2014 ◽  
Vol 968 ◽  
pp. 40-43 ◽  
Author(s):  
Cong Xue Tian

Short sulfate process was developed to produce rutile TiO2 white pigment by using low concentration industrial TiOSO4 solution as raw material via self-generated seeded thermal hydrolysis route. The concentration of TiOSO4 solution had significantly influenced the structure and pigment properties of rutile TiO2 white pigment. The samples were characterized by XRD, particle size distribution and pigment properties test. Appropriate concentration of TiOSO4 was beneficial to promoting hydrolysis process in a proper way and obtaining favorable structure and high quality white pigment. The optimized concentration of TiOSO4 solution was of 191.20 g/L.


2020 ◽  
Vol 24 (2) ◽  
pp. 45-54
Author(s):  
Dariusz Dziki ◽  
Wojciech Tarasiuk ◽  
Grzegorz Łysiak ◽  
Paweł Jochymek

AbstractThe aim of this work was to study the particle size distribution of micronized oat bran. An impact classified mill was used to pulverizing. Before the pulverizing raw material was sterilized using overheated steam at 150°C during 3.5 min. The moisture of bran after sterilization decreased from 7.2 to about 3.9%. Five speeds of the rotor disc were used: 2600, 2970, 3340, and 3710 rpm. For each speed of the rotor disc the following speeds of classifier wheel were applied: 480, 965, 1450, 1930, 2410 and 2890 rpm. The particle size distribution of oat bran layer was measured by laser light scattering. Moreover, the sense of touch of coarse particles of micronized oat bran on a tongue was assessed according to five point scale. The largest fragmentation of the oat bran was obtained at a disc speed of 3710 rpm and at a classifier rotation speed of 1930 rpm, whereas the most coarse particles were obtained when these parameters were 3340 rpm and 480 rpm, respectively. On the other hand, the highest uniformity in size of particles in size was observed when the lowest speed of disc and classifier were used. Moreover, for the most samples the pulverized particles of oat bran were almost not discernible on tongue.


2021 ◽  
Vol 1035 ◽  
pp. 273-277
Author(s):  
Yu Qing Zhang ◽  
Lu Yan Wang ◽  
Cao Bing Li ◽  
Shan Yu Liu

Jet grading technology is an efficient process in different industries. In this research, tungsten powder with different particle size distribution was used as a raw material to produce tungsten products via isostatic pressing as well as sintering. The mechanism of jet grading and the morphology and particle size distribution of different precursors were analyzed. The results showed that jet grading technology had remarkable effect on tungsten powder classification. The appropriate grading treatment was helpful to the formation of tungsten products with high performance. After jet grading and the following process like pressing and sintering, the tungsten products with better properties were manufactured which was used fischer particle size of 3.0~3.5μm as the raw material. The obtained products’ density was 18.77g/cm3 and its hardness was 372.15HV0.3.


2014 ◽  
Vol 937 ◽  
pp. 187-190
Author(s):  
Xue Bing Li ◽  
Wei Wang ◽  
Dong Hai Zhang ◽  
Li Xiong

A large amount of dust can be produced in iron and steel making process. This paper analysis the chemical composition, particle size distribution and microscopic characteristics of those iron and steel making dust. Some dust with high iron content, some dust with much CaO and some dust with carbon, those indicate that the iron and steel making dust can be used as iron making raw material. But the size of the iron and steel making dust is very small, which will make it harder to deal with those dust.


2014 ◽  
Vol 802 ◽  
pp. 291-296 ◽  
Author(s):  
Beatriz Furquim Vry ◽  
Walter Pomarico ◽  
Fabio Ferraço ◽  
Rodrigo Sampaio Fernandes ◽  
Sylma Carvalho Maestrelli

For a Soderberg Technology, paste production process consists of four basic steps: raw material handling; dry aggregate preparation; mixing; and briquettes loading at electrolytic cells for aluminum production. Dry aggregate is prepared from calcined petroleum coke, where the grains are crushed and separated between 3 different fractions of pre-determined sizing and a dust component. Petroleum pitch blended with the finest particles from dry aggregate forms the binder used for wetting, lubricating and filling open pores of larger coke grains, resulting into a higher anode paste quality with adequate mechanical properties, higher density, oxidation resistance and lower electrical resistivity. Raw materials recent trends showed significant quality degradation and cost raise, pushing up industry to look forward for untraditional suppliers, in addition to process optimization. This paper describes enablers chosen to improve paste properties, through dry aggregate particle size distribution using two of the most traditional particle packing models: Andreasen and Alfred. The formulations developed in this work were compared to the formulation originally used by an industry through measures flowability and apparent baked density. The results have shown that both the equations of Alfred and Andreasen, for distribution coefficient 0.30 and 0.52 respectively, can be applied to the Aluminum Industry, resulting into products significantly different from the point of view of quality.


2007 ◽  
Vol 18-19 ◽  
pp. 241-247
Author(s):  
E.J. Eterigho ◽  
M.A. Olutoye

The physical properties of some Nigerian clays were studied in order to determine their suitability for a variety of industrial applications. From the analysis, the specific gravity of Ukpor and Ahoko clays were 1.89 and 2.26 respectively and the Plasticity Index 26.05% and 22.45%, drying shrinkage was 18.90% and 8.2% and particle size distribution showed that the samples are clays. The results show that the physical properties of the clays are within the specifications for kaolin clays and are suitable for industrial uses.


2021 ◽  
Vol 13 (5) ◽  
pp. 2620
Author(s):  
Veronika Barišić ◽  
Jovana Petrović ◽  
Ivana Lončarević ◽  
Ivana Flanjak ◽  
Drago Šubarić ◽  
...  

Recently, the enrichment of chocolate has become a very interesting topic, along with the management of food industry by-products, such as cocoa shells. Cocoa shells could be a great raw material for the cocoa industry, both for economical reasons (maximized utilization of cocoa beans) and for their functional properties (increased fiber content). In this research, we used untreated and high-voltage electrical discharge (HVED)-treated cocoa shells in the production of chocolate. Different proportions of cocoa mass were replaced with cocoa shells to produce dark and milk chocolates in a ball mill. Additionally, dark chocolate with 15% and milk chocolate with 5% of shells were chosen for further research and to study the alteration of the composition. The rheology, particle size distribution, hardness, and color were determined for all the prepared samples. Treated cocoa shells provided chocolates with inferior physical properties compared to chocolates with untreated shells. Therefore, untreated cocoa shells were selected for further analysis. The addition of both treated and untreated cocoa shells resulted in softening and darkening of samples, which could have a positive effect for consumers. On the other hand, the particle size distribution and rheology were negatively affected. Further research is needed to find a solution for these problems.


2016 ◽  
Vol 20 (4) ◽  
pp. 207-217 ◽  
Author(s):  
Marek Wróbel ◽  
Jarosław Frączek ◽  
Marcin Jewiarz ◽  
Krzysztof Mudryk ◽  
Krzysztof Dziedzic

Abstract The paper presents the results of research, the objective of which was to determine the impact of particle size distribution and density of digestates and ash on density and tensile strength of granular fertilizer obtained from mixtures of these substrates. Particle size distribution, absolute density, envelope density and porosity of substrates were determined. Granular fertilizers were made of clean substrates and their mixtures. Envelope density of the obtained granulates was within 0.81 - 1.88 g⋅cm-3. The determined compaction degree was within 3.65 - 10.12. While, the compaction index IS of granulates made of mixtures was within 0.5 - 0.55 and was lower in comparison to IS of granulates from digestates (0.6) and ash (0.76).


Sign in / Sign up

Export Citation Format

Share Document