Prediction of gross calorific value and ash content of woodchip samples by means of FT-NIR spectroscopy

2018 ◽  
Vol 169 ◽  
pp. 77-83 ◽  
Author(s):  
M. Mancini ◽  
Å. Rinnan ◽  
A. Pizzi ◽  
G. Toscano
2019 ◽  
Vol 27 (1) ◽  
pp. 15-25 ◽  
Author(s):  
M Mancini ◽  
D Duca ◽  
G Toscano

The European target of ensuring reliable and sustainable energy has led to the increase in biofuel demand. This growth makes necessary the check of the product quality in order to prevent environmental and technical problems during combustion. Technical standard EN ISO 17225 divided the different biofuels into quality classes on the basis of their chemico-physical characteristics and the origin and source. In addition, they define the laboratory methodologies to be performed. These conventional analyses can determine these quality parameters but they are lengthy and expensive compared to the real need of the market. In this study, Vis-NIR spectroscopy coupled with partial least squares regression was used to predict the most important chemical-physical parameters of woodchip and pellet samples as a possible alternative to the conventional laboratory analysis. The results showed the possibility to use spectroscopy to obtain information about biofuel quality. In detail, moisture content and net calorific value of woodchip samples were predicted with RMSEP of 3.78% (r2(pred) = 0.97) and RMSECV of 0.37 MJ/kg (r2(CV) = 0.92), respectively. Ash content and gross calorific value of pellet samples were predicted with RMSECV of 0.44% (r2(CV) = 0.81) and 0.20 MJ/kg (r2(CV) = 0.78), respectively, while ash content and gross calorific value on ground pellet samples were predicted with RMSECV of 0.47% (r2(CV) = 0.78) and 0.19 MJ/kg (r2(CV) = 0.80), respectively. The best results were obtained considering only the near infrared region of the electromagnetic spectrum, suggesting that the visible part is not influential for the prediction of the parameters of this study. Having such a rapid and economic tool will be fundamental for the biofuel processors in order to check different quality characteristics of the products directly in real time without the time delay of the laboratory analysis and complications of sampling representation.


CERNE ◽  
2014 ◽  
Vol 20 (2) ◽  
pp. 245-250 ◽  
Author(s):  
Graciela Inés Bolzon de Muñiz ◽  
Elaine Cristina Lengowski ◽  
Silvana Nisgoski ◽  
Washington Luis Esteves de Magalhães ◽  
Valcineide Tanobe de Oliveira ◽  
...  

The demand for new energy sources is growing and awakening interest in the use of forest residues. Charcoal was prepared at carbonization temperatures of 500 ºC, 600 °C and 700 °C in order to evaluate the potential use of Pinus sp needles for energy. The anatomical and chemical characteristics of the needles and the charcoal produced were also evaluated. The needles were found to have ash content of 2.32% and gross calorific value of 20.30 MJ/kg. The calorific value increased by 45%, reaching 29.64 MJ/kg, after carbonization carried out at 600 ºC. This value is higher than that for charcoal made from eucalyptus (19.25 MJ/kg) and even coconut husks (23.55 MJ/kg), showing the high energy potential of these needles.


Energies ◽  
2021 ◽  
Vol 14 (13) ◽  
pp. 3789
Author(s):  
Dinko Vusić ◽  
Filip Vujanić ◽  
Karlo Pešić ◽  
Branimir Šafran ◽  
Vanja Jurišić ◽  
...  

The research was conducted with the goal to determine the variability of the quality parameters of the wood chips produced from the most favorable raw material (energy roundwood), and in the most controllable operational conditions (pellet factory), as the first step in identifying opportunities to optimize the wood chips’ quality monitoring. Four raw material types were tested: fir/spruce and beech debarked energy roundwood, as well as energy wood with bark of the same species. Sampling was conducted during six consecutive months along with laboratory testing, all according to the HRN EN ISO standards for solid biofuels. Interpretation of the results was done in relation to deviation from the first sampling results (as an indicator of the possibility to retain the quality of wood chips), and repeatability and reproducibility set in the standards (as an indicator of acceptable variability). The influence of the species and debarking process on the wood chips’ quality was analyzed as well. Relative deviation from the first sampling as well as the quality class change pointed moisture content as a normative property with the lowest possibility to retain initial values over the six-month period. Ash content results indicated a strong possibility to maintain the initial ash content class in the majority of the samples. In just three cases, the results of ash content were outside the reproducibility limits with first sampling as a reference. Gross calorific value results pointed only four samples outside the reproducibility limits with the first sampling results are set as a reference. Wood species influenced gross calorific value and the median value of the particle size distribution and debarking showed a significant positive effect on the moisture content reduction as well as on the ash content reduction. Presented findings are indicative for the investigated raw materials, however for the general conclusion on the subject of wood chips normative properties variation, various raw material types will have to be examined in further research.


CERNE ◽  
2010 ◽  
Vol 16 (4) ◽  
pp. 531-537 ◽  
Author(s):  
Martha Andreia Brand ◽  
Graciela Inês Bolzon de Muñiz ◽  
Waldir Ferreira Quirino ◽  
José Otávio Brito

This work aims to determine an optimal storage time of forest biomass for use in energy production, through analysis of variations in physical and chemical properties of with bark timber over the storage period. The study was conducted in the municipality of Lages, SC, over a span of 18 months. The experiment used with bark logs of Pinus taeda and Eucalyptus dunnii, with varying diameters, and slabs of Pinus spp., stored in piles. The material was sampled freshly harvested (control), after two, after four and after six months of storage. Four lots were used, harvested and stored at the spring, summer, autumn and winter seasons. Properties being assessed included moisture content (wet basis), gross calorific value, net calorific value and ash content. Results demonstrated that storage time influenced moisture content and net calorific value, yet it had no influence on gross calorific value and ash content. Optimal storage time ranged from two to four months, depending on the species, form of biomass and storage season. The best behavior regarding quality after storage was from Pinus slabs, followed by Eucalyptus logs and Pinus logs, the latter showing the worst behavior.


2019 ◽  
Vol 93 (4) ◽  
pp. 437-442 ◽  
Author(s):  
Priya Kumari ◽  
Ashok K. Singh ◽  
David A. Wood ◽  
Bodhisatwa Hazra

2016 ◽  
Vol 40 (4) ◽  
pp. 749-758 ◽  
Author(s):  
Elder Eloy ◽  
Dimas Agostinho da Silva ◽  
Denise Schmidt ◽  
Rômulo Trevisan ◽  
Braulio Otomar Caron ◽  
...  

ABSTRACT This study aimed to determine the effect of planting age and spacing on energy properties of different compartments of the biomass of Eucalyptus grandis W. Hill ex Maiden, disseminated in different spacings: 2.0 x 1.0 m, 2.0 x 1.5 m, 3.0 x 1.0 m e 3.0 x 1.5 m, in the 1st, 3rd and 5th year after the planting. The present study was carried out as an experiment installed in an experimental design of randomized complete blocks in three replications. Variables determined were Biomass (BIO), Gross Calorific Value (GCV), Basic Density (BD), Energy Productivity (EP), Energy Density (ED), Fixed Carbon Content (FCC), Volatile Material Content (VMC), and Ash Content (AC). Ages have an effect on all studied variables, and in the 5th year after planting, the largest BIO, EP, BD, ED and FCC values are checked. The planting spacings induce different productions of BIO and EP, with a trend towards lower values with increasing planting spacing in all assessed periods. The compartments of trees influence BIO, GCV, FCC, VMC and AC variables. Regarding to energy, the higher the age and lower the planting spacing, the better the energy properties of biomass.


2020 ◽  
Vol 13 (2) ◽  
pp. 105-109
Author(s):  
E. S. Dremicheva

This paper presents a method of sorption using peat for elimination of emergency spills of crude oil and petroleum products and the possibility of energy use of oil-saturated peat. The results of assessment of the sorbent capacity of peat are presented, with waste motor oil and diesel fuel chosen as petroleum products. Natural peat has been found to possess sorption properties in relation to petroleum products. The sorbent capacity of peat can be observed from the first minutes of contact with motor oil and diesel fuel, and significantly depends on their viscosity. For the evaluation of thermal properties of peat saturated with petroleum products, experimental studies have been conducted on determination of moisture and ash content of as-fired fuel. It is shown that adsorbed oil increases the moisture and ash content of peat in comparison with the initial sample. Therefore, when intended for energy use, peat saturated with petroleum products is to be subjected to additional drying. Simulation of net calorific value has been performed based on the calorific values of peat and petroleum products with different ratios of petroleum product content in peat and for a saturated peat sample. The obtained results are compared with those of experiments conducted in a calorimetric bomb and recalculated for net calorific value. A satisfactory discrepancy is obtained, which amounts to about 12%. Options have been considered providing for combustion of saturated peat as fuel (burnt per se and combined with a solid fuel) and processing it to produce liquid, gaseous and solid fuels. Peat can be used to solve environmental problems of elimination of emergency spills of crude oil and petroleum products and as an additional resource in solving the problem of finding affordable energy.


Sign in / Sign up

Export Citation Format

Share Document