scholarly journals Variability of Normative Properties of Wood Chips and Implications to Quality Control

Energies ◽  
2021 ◽  
Vol 14 (13) ◽  
pp. 3789
Author(s):  
Dinko Vusić ◽  
Filip Vujanić ◽  
Karlo Pešić ◽  
Branimir Šafran ◽  
Vanja Jurišić ◽  
...  

The research was conducted with the goal to determine the variability of the quality parameters of the wood chips produced from the most favorable raw material (energy roundwood), and in the most controllable operational conditions (pellet factory), as the first step in identifying opportunities to optimize the wood chips’ quality monitoring. Four raw material types were tested: fir/spruce and beech debarked energy roundwood, as well as energy wood with bark of the same species. Sampling was conducted during six consecutive months along with laboratory testing, all according to the HRN EN ISO standards for solid biofuels. Interpretation of the results was done in relation to deviation from the first sampling results (as an indicator of the possibility to retain the quality of wood chips), and repeatability and reproducibility set in the standards (as an indicator of acceptable variability). The influence of the species and debarking process on the wood chips’ quality was analyzed as well. Relative deviation from the first sampling as well as the quality class change pointed moisture content as a normative property with the lowest possibility to retain initial values over the six-month period. Ash content results indicated a strong possibility to maintain the initial ash content class in the majority of the samples. In just three cases, the results of ash content were outside the reproducibility limits with first sampling as a reference. Gross calorific value results pointed only four samples outside the reproducibility limits with the first sampling results are set as a reference. Wood species influenced gross calorific value and the median value of the particle size distribution and debarking showed a significant positive effect on the moisture content reduction as well as on the ash content reduction. Presented findings are indicative for the investigated raw materials, however for the general conclusion on the subject of wood chips normative properties variation, various raw material types will have to be examined in further research.

1970 ◽  
Vol 1 (1) ◽  
pp. 8-13
Author(s):  
Fahrizal Hazra ◽  
Novita Sari

Nyamplung shell is a biomass whose existence has not been optimally utilized. Biomass is a solid waste that can be used again as a source of fuel. Favorable characteristics of the biomass is an energy source that can be utilized in a sustainable manner because it is renewable. Biomass of Nyamplung shell can be processed become a form of solid fuel with a same specific dimension, it is resulting from compression of bulk materials, powders, and the relatively small size commonly referred to as charcoal briquettes.  The aim of this research is to test the feasibility of nyamplung shell as a raw material for making briquettes on the households by conducting analysis of quality parameters briquette specimens including physical properties (water content, calor value, and density), briquette durability (persistence press), chemical (ash content, fixed carbon and volatile matter content) and the rate of burning charcoal briquette.  The treatment in this aim is a mixture composition of raw materials (charcoal of Nyamplung shell) who were given the same amount of adhesive and compressed by compressing hydraulic briquette. The results showed that, charcoal briquettes made from the Calophyllum shell can be used as alternative energy, with a characteristic range of values from 3,39-3,83% moisture content, calor value ranges from 3.646,14-5.431,35 calories / gram, the range of density values 0,663-0,721 gram/cm3, the range of persistence press value 1,98-5,39 kg/cm2, the range of ash content value 19,89-24,51%, the range of fixed carbon value 33,09-40,86%, the range of volatile matter value 35,03-38,57%, and the range of rate of burning from 0,0574-0,0898 grams/second. The low value of moisture content can lead to higher heating value of charcoal briquettes. High/low levels of volatile could affect fast/slow rate of burning charcoal briquettes. Key words : nyamplung shell, biomass, charcoal briquette


2017 ◽  
Vol 3 (1) ◽  
pp. 20-32
Author(s):  
G Jeni Christi A ◽  
Laksmi Ambarsari ◽  
Heri Purwoto

Capsules are very important in the packaging of pharmaceutical preparations. Commercial capsule shell is generally made of gelatin from cows and pigs. Alternatives to gelatin from non-animal raw materials can be obtained from polysaccharides like starch and carrageenan. The purpose of this study was to obtain the optimum formula between amylopectin and carrageenan as a raw material subtitute for gelatin capsule shell. Program Design Expert 7.0.0 (trial version) with Response Surface Methodology (RSM) Central Composite Design was used to optimize formula with three variable factors and three response variables. Based on the analysis by determining the adjusted range, program recommends 29 optimization solution with desirability value 1. Formula 6 and 28 was selected for validation with factors 1,01% of amylopectin, 1.01% of carrageenan, 2.17% of glycerin (formula 6) and 3.00% of amylopectin, 2.00% of carrageenan, 2.90% of glycerin (formula 28). Prediction response value was 12.94% of moisture content, 6.35% of ash content (formula 6) and 12.99% of moisture content, 8.67% of ash content (formula 28). Validation result value was 21.45% of moisture content, 7.58% of ash content, 6.12 minutes of solubility in water (formula 6) and 17.67% of moisture content, 7.78% of ash content, 9.30 minutes of solubility in water.


Author(s):  
Magdalena DĄBROWSKA ◽  
Milena JAWOREK ◽  
Adam ŚWIĘTOCHOWSKI ◽  
Aleksander LISOWSKI

Wastes from forest and agricultural industry are still insufficiently used. One of the ways of their preprocessing is a pyrolysis process. Therefore, the aim of this study was to determine the energetic properties of biochar made of walnut shells, forest wood chips and willow chips. The studies were performed according to standards. The moisture contents of the material, the ash contents, the net and gross calorific values were determined. Low moisture and ash content were found in each of the biochar species. For all tested samples the ash contents were lower than 6% and for forest wood chips it was 1.5% only. The way of processing the biomass in the pyrolysis process significantly increased the calorific value of the raw materials. It was found that the net calorific values of the tested materials were high and reached the amount of 26.58 MJ‧kg-1 for biochar made of walnut shells, 22.29 MJ‧kg-1 for biochar made of forest wood chips and 24.59 MJ‧kg-1 for biochar made of willow chips. Due to the good physical properties of biochar produced from waste and biological materials, it was found that these solid fuels can be used for energy purposes.


Author(s):  
Zh.O. Petrova ◽  
Yu.P. Novikova

The article presents research on the preparation of raw materials, creation and granulation of compositions from obsolete sludge deposits of peat and biomass. Studies of raw material preparation processes have shown that obsolete sludge deposits have excessive ash content. To reduce ash content, it is advisable to add peat and biomass to sludge. During the study of peat, it was determined that peat extracted from the floodplain of Irpen has a high ash content, so for further research used peat from Chernihiv. The created compositions were subjected to granulation in different compositions and ratios. Preliminary dehydration of peat in the drying cabinet and moistening of the sludge were performed to create different sludge-peat mixtures with different moisture content of sludge and peat. When creating two-component compositions to sludge-peat add biomass. Studies have allowed us to choose the optimal ratio for granulation.


REAKTOR ◽  
2019 ◽  
Vol 18 (04) ◽  
pp. 183 ◽  
Author(s):  
Santiyo Wibowo ◽  
Ningseh Lestari

Peanut shells could be regarded as biomass wastes generated from agricultural products, which are abundantly available.  The current handling of those wastes is merely through direct incineration, without a proper and controlled manner. Consequently, it could arouse environmental concerns, such as air pollution and human respiratory diseases.  One alternative solution is converting those peanut shells to bio-pellet, expectedly applicable for fuels.  Relevantly, research on bio-pellet manufacture from peanut shells, previously treated with the torrefaction, was conducted. It’s aimed mainly to identify the fuel-related characteristics of bio-pellet products.  The tested bio-pellet parameters covered, moisture content, ash content, volatile matters, fixed carbon content, calorific values, and density.  The results revealed that torrefaction temperature and time at raw materials (peanut shells) could improve their qualities in regard to particular calorific value compared to those before such torrefaction; which referred to Indonesia’s Standard (SNI-8021-2014) for wood bio-pellet.  Further, torrefaction could increase bio-pellet quality which satisfied the SNI’s Standard, except for ash content.  Optimal torrefaction treatment was obtained at 300oC temperature for 60 minutes, whereby it achieved remarkable bio-pellet characteristics in terms of moisture content (3.092%), ash content (6.116%), volatile matters (38.387%), fixed carbon (55.447%), calorific value (6174 cal/g), and density (0.703 g/cm3). The torrefaction bio-pellets from peanut shells could achieve remarkable performances, with respect to fuel consumption rate (0.68 kg/hr), heating value (6174 kcal/kg), and thermal efficiency (16.67%).


2021 ◽  
Vol 891 (1) ◽  
pp. 012022
Author(s):  
N J Wistara ◽  
P Diputra ◽  
D Hendra

Abstract Oil palm trunk (OPT) is a potential raw material for biopellet manufacturing. This study aimed to reduce the ash content of biopellet through pre-treatment with sulfuric acid. The moisture content, durability, ash content, density, and calorific values of the biopellet were determined according to DIN EN 14961-2 and 51731 standards. Scanning electron microscopy (SEM) indicated the presence of inter-particle interlocking in the highly durable biopellet. Thermal analysis indicated that the mass and water loss, hemicellulose, cellulose, and lignin decomposition occurred at 76.12 ºC, 113.97-200 ºC, 310-360 ºC, and >400 ºC, respectively. Biopellet produced retained a moisture content of 3.40-8.90%, the durability of 97.75-99.38%, ash content after pre-treatment with H2SO4 of 1.02-1.47%, control ash content of 2.20-3.31%, the density of 1.03-1.30 g/cm3, and the calorific value of 3954-4608 kcal/kg. The biopellet quality fulfilled the requirements of DIN EN 14961-2, 51731, and SNI 8021-2014 standard, except for the ash content of the control.


2020 ◽  
Vol 4 (2) ◽  
pp. 126
Author(s):  
Guna Bangun Persada ◽  
Putty Yunesti

Briquettes are an essential product for metal mineral processing plants in Indonesia. One good alternative raw materials for briquettes that do not pollute the environment is the palm kernel shell. This research was conducted by making briquettes from palm kernel shells to find optimal variations in carbonization temperature, material mixture, and adhesive mixture. The research was conducted on a laboratory scale. The palm kernel shell and coal kernel were carbonized at various temperatures, namely 450°C, 550°C, and 650°C, then crushed and sieved to 35 mesh. The powdered palm kernel shell and coal that have become powdered charcoal are weighted based on a mixture of powder and the adhesive composition ratio of 40 g. After that, the briquettes were formed under a pressure of 100 kg/cm² on a cylindrical mold with 40 mm. The analyzes carried out were moisture content, ash content, volatile substances content, fixed carbon content, calorific value, compressive strength, density, porosity, and SEM (Scanning Electron Microscope). The results showed that the briquette from the kernel of the palm kernel shell was optimal at a temperature of 550 ° C with a starch adhesive mixture of 7.5%, a pressure of 100 kg/cm², moisture content of 5.34%, an ash content of 5.81%, a substance content. Volatile amounted to 18.77%, 71.08% for fixed carbon, heating value 7125.86 cal/g. Density of 0.78, porosity of 0.04 and strength of 72.56 kg / cm².


Author(s):  
O. A. Sotannde ◽  
A. M. Dadile ◽  
M. Umar ◽  
S. M. Idoghor ◽  
B. D. Zira

Aims: The study explored the combustion properties of woods and barks of some selected trees and the mixtures of the two in order to map out how fuel material composition affect the combustion properties of biomass materials. Study Design: The study is a two-factor factorial experiment in a completely randomized design. The main factors are the tree species and fuel material types. Place and Duration of Study: Tree samples used for this study were coppiced stems harvested from smallhold farm plots along the Damaturu - Gujba fuelwood corridors in Yobe State. The analytical study was carried out in Wood and Fibre Science Laboratory of the Department of Forestry and Wildlife, University of Maiduguri, Nigeria between April 2018 and December 2019. Methodology: Ten tree species were used for this study. Each species was replicated 3-times, making a total of 30 stems with their dbh between 10 and 15 cm. A sample billet of 20 cm log was cut from each stem at 10 cm below and above dbh. Each billet was debarked, chipped separately and dried to approximately 12% moisture content. From the chips, 100% wood, 95%W-5%B, 90%W-10%B and 100% bark fuel material samples were created, grinded with mechanical grinder and sieved to approximately 0.4 mm particle size based on ASTM D2013-86. The sieved samples obtained were then analyzed for their percentage moisture content, volatile matter, fixed carbon, ash and gross calorific values using ASTM standard methods. The data obtained were subjected to Analysis of variance from which % variance component and LSD were computed α = 0.05 and 0.01 level of significance. Results: All the measured parameters varied significantly among the tree species and the compositions of the fuel materials obtained from them. Majority of the variation in the fuelwood properties were attributed to the composition of the fuel materials obtained from the trees rather than the species they were made of. On the average, moisture content of the samples ranged from 27.66 to 40.44%, volatile matter (61.38 to 75.11%), ash (0.52 to 2.42%), fixed carbon (24.19 to 36.20%) and gross calorific value (32.99 to 33.02 MJ.kg-1). The moisture and ash contents of the fuel materials obtained from all the tree species increased with the level of bark inclusion whereas, volatile matter content and gross calorific values decreased significantly with level of bark inclusion (P < 0.05). Also, gross calorific value of the fuel materials correlates positively with volatile matter and fixed carbon contents. But, correlate negatively with moisture and ash contents. Among the studied tree species, chips obtained from A. leiocarpus had the highest energy value, followed by C. arereh and B. aegyptiaca while P. reticulatum, A. sieberiana and C. lamprocarpum had the least energy value in that order. Conclusion: Based on their energy value and ash content, minimizing the bark content in wood chips is important from energy and environment point of view. Therefore, chips with 100% wood and those with 5% bark inclusions are recommended for heat generation.


CERNE ◽  
2010 ◽  
Vol 16 (4) ◽  
pp. 531-537 ◽  
Author(s):  
Martha Andreia Brand ◽  
Graciela Inês Bolzon de Muñiz ◽  
Waldir Ferreira Quirino ◽  
José Otávio Brito

This work aims to determine an optimal storage time of forest biomass for use in energy production, through analysis of variations in physical and chemical properties of with bark timber over the storage period. The study was conducted in the municipality of Lages, SC, over a span of 18 months. The experiment used with bark logs of Pinus taeda and Eucalyptus dunnii, with varying diameters, and slabs of Pinus spp., stored in piles. The material was sampled freshly harvested (control), after two, after four and after six months of storage. Four lots were used, harvested and stored at the spring, summer, autumn and winter seasons. Properties being assessed included moisture content (wet basis), gross calorific value, net calorific value and ash content. Results demonstrated that storage time influenced moisture content and net calorific value, yet it had no influence on gross calorific value and ash content. Optimal storage time ranged from two to four months, depending on the species, form of biomass and storage season. The best behavior regarding quality after storage was from Pinus slabs, followed by Eucalyptus logs and Pinus logs, the latter showing the worst behavior.


2021 ◽  
Vol 9 (2) ◽  
pp. 412
Author(s):  
Diana Ulfa ◽  
Lusyiani Lusyiani ◽  
Gusti A.R. Thamrin

The purposes of this study were: 1) To analyze the characteristics of rice husk waste biopellets such as moisture content, density, ash content, flight substance content, calorific value and bound carbon content, 2) To identify the factors that influence the production of biopellets from rice husk waste. This study used a completely randomized design model with 2 (two) factors, namely variations in mesh size and variations of adhesive with 3 (three) replications. Making biopellet samples and testing the characteristics of rice husk biopellets were carried out at the Forest Products Technology Laboratory, Faculty of Forestry, Lambung Mangkurat University, Banjarbaru. The size of the powder and the amount of added adhesive as well as the interaction between the two did not have a significant effect on the value of moisture content, density, ash content, flight substance content and bonded carbon content, but had a very significant effect on heating value. The average value of moisture content ranged from 13.0771 - 14.5932%, the average density value ranged from 0.7698 g/cm3- 0.9548 g/cm3, the average value of the resulting ash content ranged from 16.5233% - 19.9633%, the average value of flying substances ranged from 57.3533% - 63.6067%, the average value of bound carbon was 6.3462% - 8.7668%, and the average heating value ranged from 2781.3800 cal/g - 3378.4600 cal/g. The factors that affect the quality of the biopelet are the process of pretreating the raw material, refining the size and mixing the adhesive.


Sign in / Sign up

Export Citation Format

Share Document