Analysis of the temperature and thermal stress in pure tungsten monoblock during heat loading and the influences of alloying and dispersion strengthening on these responses

2016 ◽  
Vol 107 ◽  
pp. 44-50 ◽  
Author(s):  
Makoto Fukuda ◽  
Shuhei Nogami ◽  
Wenhai Guan ◽  
Akira Hasegawa ◽  
Takeo Muroga
2020 ◽  
Vol 542 ◽  
pp. 152509
Author(s):  
M. Fukuda ◽  
Y. Seki ◽  
K. Ezato ◽  
K. Yokoyama ◽  
H. Nishi ◽  
...  

Author(s):  
N.J. Long ◽  
M.H. Loretto ◽  
C.H. Lloyd

IntroductionThere have been several t.e.m. studies (1,2,3,4) of the dislocation arrangements in the matrix and around the particles in dispersion strengthened single crystals deformed in single slip. Good agreement has been obtained in general between the observed structures and the various theories for the flow stress and work hardening of this class of alloy. There has been though some difficulty in obtaining an accurate picture of these arrangements in the case when the obstacles are large (of the order of several 1000's Å). This is due to both the physical loss of dislocations from the thin foil in its preparation and to rearrangement of the structure on unloading and standing at room temperature under the influence of the very high localised stresses in the vicinity of the particles (2,3).This contribution presents part of a study of the Cu-Cr-SiO2 system where age hardening from the Cu-Cr and dispersion strengthening from Cu-Sio2 is combined.


2018 ◽  
Author(s):  
Wentao Qin ◽  
Scott Donaldson ◽  
Dan Rogers ◽  
Lahcen Boukhanfra ◽  
Julien Thiefain ◽  
...  

Abstract Many semiconductor products are manufactured with mature technologies involving the uses of aluminum (Al) lines and tungsten (W) vias. High resistances of the vias were sometimes observed only after electrical or thermal stress. A layer of Ti oxide was found on such a via. In the wafer processing, the post W chemical mechanical planarization (WCMP) cleaning left residual W oxide on the W plugs. Ti from the overlaying metal line spontaneously reduced the W oxide, through which Ti oxide formed. Compared with W oxide, the Ti oxide has a larger formation enthalpy, and the valence electrons of Ti are more tightly bound to the O ion cores. As a result, the Ti oxide is more resistive than the W oxide. Consequently, the die functioned well in the first test in the fab, but the via resistance increased significantly after a thermal stress, which led to device failure in the second test. The NH4OH concentration was therefore increased to more effectively remove residual W oxide, which solved the problem. The thermal stress had prevented the latent issue from becoming a more costly field failure.


Author(s):  
Michael Hertl ◽  
Diane Weidmann ◽  
Alex Ngai

Abstract A new approach to reliability improvement and failure analysis on ICs is introduced, involving a specifically developed tool for Topography and Deformation Measurement (TDM) under thermal stress conditions. Applications are presented including delamination risk or bad solderability assessment on BGAs during JEDEC type reflow cycles.


Sign in / Sign up

Export Citation Format

Share Document