scholarly journals Spatiotemporal variability of summer precipitation and precipitation extremes and associated large-scale mechanisms in Central Asia during 1979–2018

2020 ◽  
Vol 8 ◽  
pp. 100061
Author(s):  
Qianrong Ma ◽  
Jie Zhang ◽  
Asaminew Teshome Game ◽  
Yi Chang ◽  
Shuangshuang Li
2021 ◽  
Author(s):  
Xin Li

<p>Spatioteporal variability of precipitation extremes is increasingly the focus of attention in both the climate and hydrology communites, especailly in the context of global climate change. Indicated by the Clausius-Clapeyron equation under the constant relative humudity assumption, it is expected, from the thermodynamic perspective, that extreme precipitation would increase as globe warms. However, when it comes to the regional response of precipitation to global warming, the resutls could be highly uncertain due to the influences of dynamic factors such as large-scale circlation patterns and local effects. Here, we investigate trends in a set of extreme precipitation indices (EPIs) over the Yangtze River Basin (YRB) during the period of 1960-2019. Also, we explore the possible associations between spatiotemporal variability of the EPIs and global warming, ENSO, and local effects. Our resutls show marked rising trends in frequency and intensity of Yangtze precipitation extremes. Global warming tends to enhance the frequency and intensity of preciptation extremes over the YRB. The La Niña phase of ENSO could lead to an increase of precipitation extremes in the current year, but a decrease of precipitation extremes in the coming year. Local warming mainly exerts a reducing effect on precipitation extremes, which is likely associated with the significant decrease of relative humidity in the YRB. Our findings highlight the need for a systematic approach to investigate changes in precipitation extremes over the YRB.</p>


2019 ◽  
Vol 32 (16) ◽  
pp. 5123-5144 ◽  
Author(s):  
Derek Hodges ◽  
Zhaoxia Pu

Abstract Low-level jets (LLJs) are associated with 10%–45% of the summer precipitation in the U.S. Great Plains region (GPR). This study uses the NCEP North American Regional Reanalysis data product (1979–2017) to characterize the association between LLJs and precipitation extremes (anomalously wet versus dry) during the summer months (June–August) over the GPR. It is found that the number, distribution, and direction of LLJs are not clearly associated with the precipitation anomalies. The characteristics and structural variations of the LLJs and their large-scale and mesoscale environment are then examined to identify the links between LLJs and precipitation extremes. Results show that dry and wet summers vary by synoptic anomaly patterns. During dry summers the anomalous ridging results in a warmer and drier environment, primarily through subsidence, which inhibits precipitation near LLJs. In contrast, during wet summers, a reduction in subsidence occurs, resulting in stronger lift and a cooler and moister environment, which leads to enhanced precipitation near LLJs. The LLJ speed, orientation, and spatial properties vary according to the synoptic anomaly patterns. LLJs do not drive precipitation extremes, but instead, they respond to them. Specifically, the LLJ exit region is characterized by stronger baroclinity and higher moisture content during the wet years. The higher moisture content allows for ascending air parcels to reach saturation more quickly, while the stronger baroclinity increases the warm advection associated with the LLJ. This, in turn, leads to faster rising motion and is therefore closely associated with the location and intensity of the LLJ associated precipitation.


Atmosphere ◽  
2021 ◽  
Vol 13 (1) ◽  
pp. 60
Author(s):  
Yalin Tian ◽  
Zhongwei Yan ◽  
Zhen Li

As one of the largest arid and semi-arid regions in the world, central Asia (CA) is very sensitive to changes in regional climate. However, because of the poor continuity of daily observational precipitation records in CA, the spatial and temporal variations of extreme precipitation in recent decades remain unclear. Considering their good spatial and temporal continuity, gridded data, such as Climate Prediction Center (CPC) global precipitation, and reanalysis data, such as ERA-Interim (ERA), are helpful for exploring the spatial–temporal variations of extreme precipitation. This study evaluates how well CPC and ERA can represent observed precipitation extremes by comparing the differences in eight extreme precipitation indices and observation data at 84 meteorological stations. The results indicate that the CPC (except for 1979–1981) is more suitable for depicting changes in precipitation extremes. Based on the CPC data for the period 1982–2020, we found that seven indices of precipitation extremes, including consecutive wet days (CWD), max1-day precipitation amount (Rx1day), max5-day precipitation amount (Rx5day), number of heavy precipitation days (R10), very wet days (R95p), annual total precipitation in wet days (PRCPTOT), and simple precipitation intensity index (SDII) have increased by 0.2 d/10a, 0.9 mm/10a, 1.8 mm/10a, 0.3 d/10, 8.4 mm/10a, 14.3 mm/10a and 0.1 mm/d/10a, respectively, and the consecutive dry days (CDDs) have decreased by −3.10 d/10a. It is notable that CDDs decreased significantly in the north of Xinjiang (XJ) but increased in Kyrgyzstan (KG), Tajikistan (TI), and eastern Turkmenistan (TX). The other indices increased clearly in the west of XJ, north of Kazakhstan (KZ), and east of KG but decreased in the south of KG, TI, and parts of XJ. For most indices, the largest change occurred in spring, the main season of precipitation in CA. Therefore, the large-scale atmospheric circulation in April is analyzed to contrast between the most and least precipitation years for the region. A typical circulation pattern in April for those extremely wet years includes an abnormal low-pressure center at 850 hpa to the east of the Caspian Sea, which enhances the southerly winds from the Indian Ocean and hence the transportation of water vapor required for precipitation into CA. This abnormal circulation pattern occurred more frequently after 2001 than before, thus partly explaining the recent increasing trends of precipitation extremes in CA.


2021 ◽  
Author(s):  
Saurav Saha ◽  
Debasish Chakraborty ◽  
Samarendra Hazarika ◽  
I. Shakuntala ◽  
Bappa Das ◽  
...  

Abstract The present study acknowledged climate variability induced periodic variation in localized extreme weather event occurrences under diverse agro eco-regions of Eastern Himalayas of India during past five decades. The widespread rise in warm nights (TN90p; 0.31-1.67 days year-1), reduced daily rainfall intensity (SDII) and changes in other weather extremes viz. temperature and precipitation extremes signified clear signals on regional atmospheric warming across eastern India. The agro-ecological regions under extended Bramhaputra valley and coastal belts of south Bengal experienced the most persistent shifts in temperature extremes, while the upper Himalayan range extended from North Bengal to Arunachal Pradesh experienced the steepest decline in average daily rainfall intensity and other absolute quantitative estimates of precipitation extremes over past five decades. Together with El Niño and La Niña events, large scale global atmospheric circulations particularly expansion of warmer Pacific Warm Pool (PWP) and changes in Atlantic Meridional Mode (AMM) contributed the periodic dynamics in weather extreme occurrences from monthly to annual time scale over eastern India. Our findings will be useful for better understanding of regional climatology, designing and successful implantation of location-specific suitable agricultural policies towards climate change adaptation in near future.


2017 ◽  
Vol 30 (24) ◽  
pp. 9827-9845 ◽  
Author(s):  
Xin Zhou ◽  
Marat F. Khairoutdinov

Subdaily temperature and precipitation extremes in response to warmer SSTs are investigated on a global scale using the superparameterized (SP) Community Atmosphere Model (CAM), in which a cloud-resolving model is embedded in each CAM grid column to simulate convection explicitly. Two 10-yr simulations have been performed using present climatological sea surface temperature (SST) and perturbed SST climatology derived from the representative concentration pathway 8.5 (RCP8.5) scenario. Compared with the conventional CAM, SP-CAM simulates colder temperatures and more realistic intensity distribution of precipitation, especially for heavy precipitation. The temperature and precipitation extremes have been defined by the 99th percentile of the 3-hourly data. For temperature, the changes in the warm and cold extremes are generally consistent between CAM and SP-CAM, with larger changes in warm extremes at low latitudes and larger changes in cold extremes at mid-to-high latitudes. For precipitation, CAM predicts a uniform increase of frequency of precipitation extremes regardless of the rain rate, while SP-CAM predicts a monotonic increase of frequency with increasing rain rate and larger change of intensity for heavier precipitation. The changes in 3-hourly and daily temperature extremes are found to be similar; however, the 3-hourly precipitation extremes have a significantly larger change than daily extremes. The Clausius–Clapeyron scaling is found to be a relatively good predictor of zonally averaged changes in precipitation extremes over midlatitudes but not as good over the tropics and subtropics. The changes in precipitable water and large-scale vertical velocity are equally important to explain the changes in precipitation extremes.


2018 ◽  
Vol 31 (19) ◽  
pp. 8005-8021 ◽  
Author(s):  
Dongdong Peng ◽  
Tianjun Zhou ◽  
Lixia Zhang ◽  
Bo Wu

The ecosystem and societal development over arid Central Asia, the core connecting region of the Silk Road Economic Belt, are highly sensitive to climate change. The results derived from multiobservational datasets show that summer precipitation over Central Asia has significantly increased by 20.78% from 1961 to 2013. It remains unclear whether anthropogenic forcing has contributed to the summer wetting trend or not. In this study, the corresponding physical processes and contributions of anthropogenic forcing are investigated by comparing reanalysis and experiments of the Community Atmosphere Model, version 5.1 (CAM5.1), from the CLIVAR Climate of the Twentieth Century Plus (C20C+) Project. The observed wetting trend is well reproduced in the simulation driven by all radiative forcings (CAM5-All), but poorly reproduced in the simulation with natural forcings only (CAM5-Nat), confirming the important role of human contribution in the observed wetting trend. Moisture budget analysis shows that the observed wetting trend is dominated by the increasing vertical moisture advection term and results from enhanced vertical motion over nearly all of Central Asia. The observed contributions of moisture budget components to the wetting trend are only captured by CAM5-All experiments. The dynamic contribution is determined by the warm advection anomalies in association with a human-induced meridional uneven warm pattern. Human-induced warming increases the specific humidity over all of Central Asia, increasing (decreasing) the precipitation over the climatological ascent (descent) region in eastern (western) Central Asia.


Sign in / Sign up

Export Citation Format

Share Document