scholarly journals Human Contribution to the Increasing Summer Precipitation in Central Asia from 1961 to 2013

2018 ◽  
Vol 31 (19) ◽  
pp. 8005-8021 ◽  
Author(s):  
Dongdong Peng ◽  
Tianjun Zhou ◽  
Lixia Zhang ◽  
Bo Wu

The ecosystem and societal development over arid Central Asia, the core connecting region of the Silk Road Economic Belt, are highly sensitive to climate change. The results derived from multiobservational datasets show that summer precipitation over Central Asia has significantly increased by 20.78% from 1961 to 2013. It remains unclear whether anthropogenic forcing has contributed to the summer wetting trend or not. In this study, the corresponding physical processes and contributions of anthropogenic forcing are investigated by comparing reanalysis and experiments of the Community Atmosphere Model, version 5.1 (CAM5.1), from the CLIVAR Climate of the Twentieth Century Plus (C20C+) Project. The observed wetting trend is well reproduced in the simulation driven by all radiative forcings (CAM5-All), but poorly reproduced in the simulation with natural forcings only (CAM5-Nat), confirming the important role of human contribution in the observed wetting trend. Moisture budget analysis shows that the observed wetting trend is dominated by the increasing vertical moisture advection term and results from enhanced vertical motion over nearly all of Central Asia. The observed contributions of moisture budget components to the wetting trend are only captured by CAM5-All experiments. The dynamic contribution is determined by the warm advection anomalies in association with a human-induced meridional uneven warm pattern. Human-induced warming increases the specific humidity over all of Central Asia, increasing (decreasing) the precipitation over the climatological ascent (descent) region in eastern (western) Central Asia.

Atmosphere ◽  
2021 ◽  
Vol 12 (2) ◽  
pp. 136
Author(s):  
Yahya Darmawan ◽  
Huang-Hsiung Hsu ◽  
Jia-Yuh Yu

This study aims to explore the contrasting characteristics of large-scale circulation that led to the precipitation anomalies over the northern parts of Sumatra Island. Further, the impact of varying the Asian–Australian Monsoon (AAM) was investigated for triggering the precipitation variability over the study area. The moisture budget analysis was applied to quantify the most dominant component that induces precipitation variability during the JJA (June, July, and August) period. Then, the composite analysis and statistical approach were applied to confirm the result of the moisture budget. Using the European Centre for Medium-Range Weather Forecasts (ECMWF) Re-Anaysis Interim (ERA-Interim) from 1981 to 2016, we identified 9 (nine) dry and 6 (six) wet years based on precipitation anomalies, respectively. The dry years (wet years) anomalies over the study area were mostly supported by downward (upward) vertical velocity anomaly instead of other variables such as specific humidity, horizontal velocity, and evaporation. In the dry years (wet years), there is a strengthening (weakening) of the descent motion, which triggers a reduction (increase) of convection over the study area. The overall downward (upward) motion of westerly (easterly) winds appears to suppress (support) the convection and lead to negative (positive) precipitation anomaly in the whole region but with the largest anomaly over northern parts of Sumatra. The AAM variability proven has a significant role in the precipitation variability over the study area. A teleconnection between the AAM and other global circulations implies the precipitation variability over the northern part of Sumatra Island as a regional phenomenon. The large-scale tropical circulation is possibly related to the PWC modulation (Pacific Walker Circulation).


2019 ◽  
Vol 32 (12) ◽  
pp. 3505-3527 ◽  
Author(s):  
Chu-Chun Chen ◽  
Min-Hui Lo ◽  
Eun-Soon Im ◽  
Jin-Yi Yu ◽  
Yu-Chiao Liang ◽  
...  

Abstract Tropical deforestation can result in substantial changes in local surface energy and water budgets, and thus in atmospheric stability. These effects may in turn yield changes in precipitation. The Maritime Continent (MC) has undergone severe deforestation during the past few decades but it has received less attention than the deforestation in the Amazon and Congo rain forests. In this study, numerical deforestation experiments are conducted with global (i.e., Community Earth System Model) and regional climate models (i.e., Regional Climate Model version 4.6) to investigate precipitation responses to MC deforestation. The results show that the deforestation in the MC region leads to increases in both surface temperature and local precipitation. Atmospheric moisture budget analysis reveals that the enhanced precipitation is associated more with the dynamic component than with the thermodynamic component of the vertical moisture advection term. Further analyses on the vertical profile of moist static energy indicate that the atmospheric instability over the deforested areas is increased as a result of anomalous moistening at approximately 800–850 hPa and anomalous warming extending from the surface to 750 hPa. This instability favors ascending air motions, which enhance low-level moisture convergence. Moreover, the vertical motion increases associated with the MC deforestation are comparable to those generated by La Niña events. These findings offer not only mechanisms to explain the local climatic responses to MC deforestation but also insights into the possible reasons for disagreements among climate models in simulating the precipitation responses.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Dongdong Wang ◽  
Bin Zhu ◽  
Hongbo Wang ◽  
Li Sun

AbstractIn this study, we designed a sensitivity test using the half number concentration of sulfate in the nucleation calculation process to study the aerosol-cloud interaction (ACI) of sulfate on clouds, precipitation, and monsoon intensity in the summer over the eastern China monsoon region (ECMR) with the National Center for Atmospheric Research Community Atmosphere Model version 5. Numerical experiments show that the ACI of sulfate led to an approximately 30% and 34% increase in the cloud condensation nuclei and cloud droplet number concentrations, respectively. Cloud droplet effective radius below 850 hPa decreased by approximately 4% in the southern ECMR, while the total liquid water path increased by 11%. The change in the indirect radiative forcing due to sulfate at the top of the atmosphere in the ECMR during summer was − 3.74 W·m−2. The decreased radiative forcing caused a surface cooling of 0.32 K and atmospheric cooling of approximately 0.3 K, as well as a 0.17 hPa increase in sea level pressure. These changes decreased the thermal difference between the land and sea and the gradient of the sea-land pressure, leading to a weakening in the East Asian summer monsoon (EASM) and a decrease in the total precipitation rate in the southern ECMR. The cloud lifetime effect has a relatively weaker contribution to summer precipitation, which is dominated by convection. The results show that the ACI of sulfate was one possible reason for the weakening of the EASM in the late 1970s.


Atmosphere ◽  
2021 ◽  
Vol 12 (6) ◽  
pp. 664
Author(s):  
Xiao Dong ◽  
Renping Lin

In this study, the climatological precipitation increase from July to August over the western North Pacific (WNP) region was investigated through observations and simulations in the Coupled Model Intercomparison Project Phase 6 (CMIP6), atmospheric model simulations and historical experiments. Firstly, observational analysis showed that the precipitation increase is associated with a decrease in the local sea surface temperature (SST), indicating that the precipitation increase is not driven by the change in SST. In addition, the pattern of precipitation increase is similar to the vertical motion change at 500-hPa, suggesting that the precipitation increase is related to the circulation change. Moisture budget analysis further confirmed this relation. In addition to the observational analysis, the outputs from 26 CMIP6 models were further evaluated. Compared with atmospheric model simulations, air–sea coupled models largely improve the simulation of the climatological precipitation increase from July to August. Furthermore, model simulations confirmed that the bias in the precipitation increase is intimately associated with the circulation change bias. Thus, two factors are responsible for the bias of the precipitation increase from July to August in climate models: air–sea coupling processes and the performance in vertical motion change.


2013 ◽  
Vol 26 (8) ◽  
pp. 2417-2431 ◽  
Author(s):  
Qiongqiong Cai ◽  
Guang J. Zhang ◽  
Tianjun Zhou

Abstract The role of shallow convection in Madden–Julian oscillation (MJO) simulation is examined in terms of the moist static energy (MSE) and moisture budgets. Two experiments are carried out using the NCAR Community Atmosphere Model, version 3.0 (CAM3.0): a “CTL” run and an “NSC” run that is the same as the CTL except with shallow convection disabled below 700 hPa between 20°S and 20°N. Although the major features in the mean state of outgoing longwave radiation, 850-hPa winds, and vertical structure of specific humidity are reasonably reproduced in both simulations, moisture and clouds are more confined to the planetary boundary layer in the NSC run. While the CTL run gives a better simulation of the MJO life cycle when compared with the reanalysis data, the NSC shows a substantially weaker MJO signal. Both the reanalysis data and simulations show a recharge–discharge mechanism in the MSE evolution that is dominated by the moisture anomalies. However, in the NSC the development of MSE and moisture anomalies is weaker and confined to a shallow layer at the developing phases, which may prevent further development of deep convection. By conducting the budget analysis on both the MSE and moisture, it is found that the major biases in the NSC run are largely attributed to the vertical and horizontal advection. Without shallow convection, the lack of gradual deepening of upward motion during the developing stage of MJO prevents the lower troposphere above the boundary layer from being preconditioned for deep convection.


2020 ◽  
Vol 33 (13) ◽  
pp. 5357-5369
Author(s):  
Chunhui Lu ◽  
Fraser C. Lott ◽  
Ying Sun ◽  
Peter A. Stott ◽  
Nikolaos Christidis

AbstractIn China, summer precipitation contributes a major part of the total precipitation amount in a year and has major impacts on society and human life. Whether any changes in summer precipitation are affected by external forcing on the climate system is an important issue. In this study, an optimal fingerprinting method was used to compare the observed changes of total, heavy, moderate, and light precipitation in summer derived from newly homogenized observation data with the simulations from multiple climate models participating in phase 5 of the Coupled Model Intercomparison Project (CMIP5). The results demonstrate that the anthropogenic forcing signal can be detected and separated from the natural forcing signal in the observed increase of seasonal accumulated precipitation amount for heavy precipitation in summer in China and eastern China (EC). The simulated changes in heavy precipitation are generally consistent with observed change in China but are underestimated in EC. When the changes in precipitation of different intensities are considered simultaneously, the human influence on simultaneous changes in moderate and light precipitation can be detected in China and EC in summer. Changes attributable to anthropogenic forcing explain most of the observed regional changes for all categories of summer precipitation, and natural forcing contributes little. In the future, with increasing anthropogenic influence, the attribution-constrained projection suggests that heavy precipitation in summer will increase more than that from the model raw outputs. Society may therefore face a higher risk of heavy precipitation in the future.


2018 ◽  
Vol 146 (2) ◽  
pp. 641-658
Author(s):  
Amanda Mercer ◽  
Rachel Chang ◽  
Ian Folkins

Measurements from the Aircraft Communications, Addressing, and Reporting System (ACARS) dataset between 2005 and 2014 are used to construct diurnal vertical cross sections of relative humidity in the lower troposphere at six airports in the U.S. Midwest. In summer, relative humidity maxima occur between 2 and 3 km during the overnight hours of 0300–0900 local solar time (LST). These maxima coincide with negative anomalies in temperature and positive anomalies in specific humidity. Vertical winds from the Modern-Era Retrospective Analysis for Research and Applications, version 2 (MERRA-2), reanalysis dataset show that the height and diurnal timing of these positive relative humidity anomalies are consistent with the regional diurnal pattern of vertical motion. During the day, there is rising motion over the Rocky Mountains and subsidence over the Midwest, while conversely at night, there is sinking motion over the mountains and rising motion over the Midwest. The nocturnal relative humidity maxima over the Midwest are the strongest direct observational evidence to date of this mountain–plains solenoidal circulation, and provide a useful diagnostic for testing the strength of this circulation in climate and reanalysis models. There is significant interannual variability in the strength of the nocturnal relative humidity maxima. In 2011, the relative humidity maxima are very pronounced. In 2014, however, they are almost nonexistent. Finally, the relative humidity maxima are discussed in relation to the low-level jet (LLJ). The LLJ appears to be too low to directly contribute to the nocturnal relative humidity maxima.


2020 ◽  
Author(s):  
Nannan Qin ◽  
Da-Lin Zhang ◽  
William Miller ◽  
Chanh Kieu

<p>Recent studies show that some hurricanes may undergo rapid intensification (RI) without contracting the radius of maximum wind (RMW). A cloud-resolving WRF-prediction of Hurricane Wilma (2005) is used herein to examine what controls the RMW contraction and how a hurricane could undergo RI without contraction. Results show that the processes controlling the RMW contraction are different within and above the planetary boundary layer (PBL). In the PBL, radial inflows contribute to contraction, with frictional dissipation acting as an inhibiting factor. Above the PBL, radial outflows and vertical motion govern the RMW contraction, with the former inhibiting it. A budget analysis of absolute angular momentum (AAM) shows that the radial AAM flux convergence is the major process accounting for the spinup of the maximum rotation, while the vertical flux divergence of AAM and the frictional sink in the PBL oppose the spinup. During the RI stage with no RMW contraction, the local AAM tendencies in the eyewall are smaller in magnitude and narrower in width than those during the contracting RI stage. In addition, the AAM following the time-dependent RMW decreases with time in the PBL and remains nearly constant aloft during the contracting stage, whereas it increases during the non-contracting stage. These results reveal different constraints for the RMW contraction and RI, and help explain why a hurricane vortex can still intensify after the RMW ceases contraction</p>


2010 ◽  
Vol 67 (9) ◽  
pp. 2734-2751 ◽  
Author(s):  
Yanping Li ◽  
Ronald B. Smith

Abstract Harmonic analysis of pressure, temperature, and precipitation data from 1000 Automated Surface Observing System (ASOS) stations reveals a mix of stationary and east–west moving disturbances east of the Rockies. Optimization of the pressure data using a “temperature-based tide assumption” separates a strong sun-following continentally enhanced tide from a smaller eastward-propagating wave (EPW). The latter signal moves at a similar speed to the previously discovered eastward-moving precipitation systems. Analysis of ASOS summer precipitation data confirms eastward propagation, but east of 90°W it shows nonpropagating diurnal convection at a fixed local time (i.e., 1800 LST). Analysis of winter days still finds the EPW, suggesting that it is the cause and not the result of the propagating precipitation. A possible mechanism for the EPW is developed from the linear Bousinesq equations with heating and wind shear. Solutions show eastward-moving diurnal pulses of potential vorticity (PV) generated by imposed heating over the Rockies. Because of the background shear, these pulses produce vertical motion in the lower troposphere. The PV hypothesis for precipitation propagation was tested with North American Regional Reanalysis (NARR) data. Diurnal drifting thermal and PV anomalies are clearly found near the 500- and 600-hPa levels in both winter and summer. In winter, the PV signal is weaker, moves faster, and does not influence precipitation. The existence of the winter PV signal again suggests that it is the cause, not the effect, of summer propagating precipitation.


Sign in / Sign up

Export Citation Format

Share Document