Metal ion coordination to 2′ functionality of guanosine mediates substrate–guanosine coupling in group I ribozymes: implications for conserved role of metal ions and for variability in RNA folding in ribozyme catalysis

2004 ◽  
Vol 357 (13) ◽  
pp. 3934-3942 ◽  
Author(s):  
Louis Kuo ◽  
Nicholas Perera ◽  
Shyla Tarpo
Keyword(s):  
2017 ◽  
Vol 19 (36) ◽  
pp. 25105-25114 ◽  
Author(s):  
Akira Oda ◽  
Takahiro Ohkubo ◽  
Takashi Yumura ◽  
Hisayoshi Kobayashi ◽  
Yasushige Kuroda

Understanding the exact position and the detailed role of the Al array in zeolites is essential for elucidating the origin of unique properties and for designing zeolite materials with high efficiency in catalytic and adsorption processes. In this work, we advanced pivotal roles of Lewis base–metal ion bifunctionality caused by Al atoms arrayed circumferentially in the MFI-zeolite pores.


2016 ◽  
Vol 2016 ◽  
pp. 1-7 ◽  
Author(s):  
Yulia Sokurenko ◽  
Vera Ulyanova ◽  
Pavel Zelenikhin ◽  
Alexey Kolpakov ◽  
Dmitriy Blokhin ◽  
...  

Extracellular enzymes of intestinal microbiota are the key agents that affect functional activity of the body as they directly interact with epithelial and immune cells. Several species of theBacillusgenus, likeBacillus pumilus, a common producer of extracellular RNase binase, can populate the intestinal microbiome as a colonizing organism. Without involving metal ions as cofactors, binase depolymerizes RNA by cleaving the 3′,5′-phosphodiester bond and generates 2′,3′-cyclic guanosine phosphates in the first stage of a catalytic reaction. Maintained in the reaction mixture for more than one hour, such messengers can affect the human intestinal microflora and the human body. In the present study, we found that the rate of 2′,3′-cGMP was growing in the presence of transition metals that stabilized the RNA structure. At the same time, transition metal ions only marginally reduced the amount of 2′,3′-cGMP, blocking binase recognition sites of guanine at N7 of nucleophilic purine bases.


2020 ◽  
Vol 11 (1) ◽  
Author(s):  
Jin Kyun Kim ◽  
Cheol Lee ◽  
Seon Woo Lim ◽  
Aniruddha Adhikari ◽  
Jacob T. Andring ◽  
...  

Abstract Why metalloenzymes often show dramatic changes in their catalytic activity when subjected to chemically similar but non-native metal substitutions is a long-standing puzzle. Here, we report on the catalytic roles of metal ions in a model metalloenzyme system, human carbonic anhydrase II (CA II). Through a comparative study on the intermediate states of the zinc-bound native CA II and non-native metal-substituted CA IIs, we demonstrate that the characteristic metal ion coordination geometries (tetrahedral for Zn2+, tetrahedral to octahedral conversion for Co2+, octahedral for Ni2+, and trigonal bipyramidal for Cu2+) directly modulate the catalytic efficacy. In addition, we reveal that the metal ions have a long-range (~10 Å) electrostatic effect on restructuring water network in the active site. Our study provides evidence that the metal ions in metalloenzymes have a crucial impact on the catalytic mechanism beyond their primary chemical properties.


2019 ◽  
Vol 10 (38) ◽  
pp. 8752-8763 ◽  
Author(s):  
Yee-Seul Kim ◽  
Kenneth D. Harris ◽  
Benoît Limoges ◽  
Véronique Balland

The hidden role of hexaaquo metal ion complexes in the proton-coupled electron charge storage at a metal oxide electrode.


Metallomics ◽  
2011 ◽  
Vol 3 (12) ◽  
pp. 1331 ◽  
Author(s):  
Attila Jancsó ◽  
Dániel Szunyogh ◽  
Flemming H. Larsen ◽  
Peter W. Thulstrup ◽  
Niels Johan Christensen ◽  
...  

2019 ◽  
Vol 47 (1) ◽  
pp. 77-87 ◽  
Author(s):  
Stephanie L. Begg

AbstractMetal ions fulfil a plethora of essential roles within bacterial pathogens. In addition to acting as necessary cofactors for cellular proteins, making them indispensable for both protein structure and function, they also fulfil roles in signalling and regulation of virulence. Consequently, the maintenance of cellular metal ion homeostasis is crucial for bacterial viability and pathogenicity. It is therefore unsurprising that components of the immune response target and exploit both the essentiality of metal ions and their potential toxicity toward invading bacteria. This review provides a brief overview of the transition metal ions iron, manganese, copper and zinc during infection. These essential metal ions are discussed in the context of host modulation of bioavailability, bacterial acquisition and efflux, metal-regulated virulence factor expression and the molecular mechanisms that contribute to loss of viability and/or virulence during host-imposed metal stress.


2002 ◽  
Vol 30 (6) ◽  
pp. 1166-1169 ◽  
Author(s):  
S. A. Woodson

The mechanism by which RNA molecules assemble into unique three-dimensional conformations is important for understanding their function, regulation and interactions with substrates. The Tetrahymena group I ribozyme is an excellent model system for understanding RNA folding mechanisms, because the catalytic activity of the native RNA is easily measured. Folding of the Tetrahymena ribozyme is dominated by intermediates in which the stable P4-P6 domain is correctly formed, but the P3-P9 domain is partially misfolded. The propensity of the RNA to misfold depends on the relative stability of native and non-native interactions. Circular permutation of the Tetrahymena ribozyme shows that the distance in the primary sequence between native interactions also influences the folding pathway.


2021 ◽  
Vol 118 (42) ◽  
pp. e2103526118
Author(s):  
Lingfang Zhu ◽  
Lei Xu ◽  
Chenguang Wang ◽  
Changfu Li ◽  
Mengyuan Li ◽  
...  

Cellular ionic concentrations are a central factor orchestrating host innate immunity, but no pathogenic mechanism that perturbs host innate immunity by directly targeting metal ions has yet been described. Here, we report a unique virulence strategy of Yersinia pseudotuberculosis (Yptb) involving modulation of the availability of Mn2+, an immunostimulatory metal ion in host cells. We showed that the Yptb type VI secretion system (T6SS) delivered a micropeptide, TssS, into host cells to enhance its virulence. The mutant strain lacking TssS (ΔtssS) showed substantially reduced virulence but induced a significantly stronger host innate immune response, indicating an antagonistic role of this effector in host antimicrobial immunity. Subsequent studies revealed that TssS is a Mn2+-chelating protein and that its Mn2+-chelating ability is essential for the disruption of host innate immunity. Moreover, we showed that Mn2+ enhances the host innate immune response to Yptb infection by activating the stimulator of interferon genes (STING)-mediated immune response. Furthermore, we demonstrated that TssS counteracted the cytoplasmic Mn2+ increase to inhibit the STING-mediated innate immune response by sequestering Mn2+. Finally, TssS-mediated STING inhibition sabotaged bacterial clearance in vivo. These results reveal a previously unrecognized bacterial immune evasion strategy involving modulation of the bioavailability of intracellular metal ions and provide a perspective on the role of the T6SS in pathogenesis.


Sign in / Sign up

Export Citation Format

Share Document