Investigation of the synergistic extraction behavior between cerium (III) and two acidic organophosphorus extractants using FT-IR, NMR and mass spectrometry

2017 ◽  
Vol 466 ◽  
pp. 333-342 ◽  
Author(s):  
Fengyun Zhang ◽  
Jingjie Dai ◽  
Amin Wang ◽  
Wenyuan Wu
Molecules ◽  
2021 ◽  
Vol 26 (9) ◽  
pp. 2545
Author(s):  
Luna Song ◽  
Hehe Bai ◽  
Chenyang Liu ◽  
Wenjun Gong ◽  
Ai Wang ◽  
...  

Two light-activated NO donors [RuCl(qn)(Lbpy)(NO)]X with 8-hydroxyquinoline (qn) and 2,2′-bipyridine derivatives (Lbpy) as co-ligands were synthesized (Lbpy1 = 4,4′-dicarboxyl-2,2′-dipyridine, X = Cl− and Lbpy2 = 4,4′-dimethoxycarbonyl-2,2′-dipyridine, X = NO3−), and characterized using ultraviolet–visible (UV-vis) spectroscopy, Fourier transform infrared (FT-IR) spectroscopy, nuclear magnetic resonance (1H NMR), elemental analysis and electrospray ionization mass spectrometry (ESI-MS) spectra. The [RuCl(qn)(Lbpy2)(NO)]NO3 complex was crystallized and exhibited distorted octahedral geometry, in which the Ru–N(O) bond length was 1.752(6) Å and the Ru–N–O angle was 177.6(6)°. Time-resolved FT-IR and electron paramagnetic resonance (EPR) spectra were used to confirm the photoactivated NO release of the complexes. The binding constant (Kb) of two complexes with human serum albumin (HSA) and DNA were quantitatively evaluated using fluorescence spectroscopy, Ru-Lbpy1 (Kb~106 with HSA and ~104 with DNA) had higher affinity than Ru-Lbpy2. The interactions between the complexes and HSA were investigated using matrix assisted laser desorption ionization-time of flight mass spectrometry (MALDI-TOF-MS) and EPR spectra. HSA can be used as a carrier to facilitate the release of NO from the complexes upon photoirradiation. The confocal imaging of photo-induced NO release in living cells was successfully observed with a fluorescent NO probe. Moreover, the photocleavage of pBR322 DNA for the complexes and the effect of different Lbpy substituted groups in the complexes on their reactivity were analyzed.


RSC Advances ◽  
2016 ◽  
Vol 6 (3) ◽  
pp. 1810-1825 ◽  
Author(s):  
Sellamuthu Kathiresan ◽  
Subramanian Mugesh ◽  
Maruthamuthu Murugan ◽  
Feroze Ahamed ◽  
Jamespandi Annaraj

Copper(ii) complexes with simple and mixed ligands, [Cu(L)(ClO4)] and [Cu(L)(diimine)]ClO4 were synthesized and characterized by elemental analysis, UV-vis, FT-IR, electrospray ionization-mass spectrometry (ESI-MS) and electrochemical studies.


2007 ◽  
Vol 95 (5) ◽  
Author(s):  
K. Janardhan Reddy ◽  
A. Varada Reddy ◽  
B. S. Shaibu ◽  
M. L. P. Reddy

Various 3-phenyl-4-aroyl-5-isoxazolones, namely, 3-phenyl-4-benzoyl-5-isoxazolone (HPBI), 3-phenyl-4-(4-fluorobenzoyl)-5-isoxazolone (HFBPI) and 3-phenyl-4-(4-toluoyl)-5-isoxazolone (HTPI) were synthesized and examined with regard to the solvent extraction behavior of Zr(IV) and Hf(IV) from hydrochloric acid solutions. The results demonstrated that Zr(IV) and Hf(IV) extracted into chloroform with 3-phenyl-4-aroyl-5-isoxazolones (HA), as ZrOA


Author(s):  
G. Dayana Jeyaleela ◽  
S. Irudaya Monisha ◽  
J. Rosaline Vimala ◽  
A. Anitha Immaculate

Objective: Natural products from medicinal plants, either as isolated compounds or as standardized plant extracts exhibit promising source of medicinal activity against various diseases. The aim of the present work was to make an attempt of isolation of bioactive principle and characterization of the isolated compound, from the medicinal plant Melia dubaiMethods: The extraction was done by a cold percolation method and the compound was separated and isolated by chromatography technique such as a thin layer chromatography (TLC), column chromatography and high-performance liquid chromatography (HPLC). The isolated compound was crystallized and the structural characterization of the isolated compound was made using UV-Visible, FT-IR, 1H-NMR, GC-MS and MS techniques which confirmed the structure of the isolated compound.Results: The separated and isolated compound was characterized by both physical and spectral methods like Ultraviolet-Visible spectroscopy (UV-Visible), Fourier transform infrared spectroscopy (FT-IR), Proton Nuclear Magnetic Resonance Spectroscopy (1H-NMR), Gas chromatography-mass spectrometry (GC-MS), and Mass spectrometry(MS). Based on the studies, organizational characteristics of one bioactive principle were deciphered. The results revealed that the isolated species is 2-chlorobenzimidazole and it agreed well with the reported value and spectra for 2-chlorobenzimidazole.Conclusion: The above results obtained in this research work clearly indicated the promising occurrence of 2-chlorobenzimidazole in Media dubia plant leaves. The future scope of these studies may guide us to view the biological activity of the isolated compound.


2020 ◽  
Vol 7 (4) ◽  
pp. 200050
Author(s):  
Adel Amer ◽  
Abdelrahman H. Hegazi ◽  
Mohammed Khalil Alshekh ◽  
Hany E. A. Ahmed ◽  
Saied M. Soliman ◽  
...  

A new series of N'-substituted benzylidene-2-(4-oxo-2-phenyl-1,4-dihydroquinazolin-3(2H)-yl)acetohydrazide ( 5a–5h ) has been synthesized, characterized by FT-IR, NMR spectroscopy and mass spectrometry and tested against human monoamine oxidase (MAO) A and B. Only (4-hydroxy-3-methoxybenzylidene) substituted compounds gave submicromolar inhibition of MAO-A and MAO-B. Changing the phenyl substituent to methyl on the unsaturated quinazoline ring ( 12a–12d ) decreased inhibition, but a less flexible linker ( 14a–14d ) resulted in selective micromolar inhibition of hMAO-B providing insight for ongoing design.


2019 ◽  
Vol 3 (1) ◽  
pp. 34 ◽  
Author(s):  
Nataliia Nastasiienko ◽  
Borys Palianytsia ◽  
Mykola Kartel ◽  
Mats Larsson ◽  
Tetiana Kulik

The studies of pyrolysis of caffeic acid (CA) and its surface complexes is important for the development of technologies of heterogeneous catalytic pyrolysis of plant- and wood- based renewable biomass components. In this work, the structure and thermal transformations of the surface complexes of CA on the surface of nanoceria were investigated using Fourier transform–infrared (FT–IR) spectroscopy, thermogravimetric analysis (TGA) and temperature-programmed desorption mass spectrometry (TPD MS). It was found that CA on the surface of cerium dioxide forms several types of complexes: bidentate carboxylates, monodentate carboxylates and complexes formed as a result of interaction with phenolic hydroxyl groups. This is due to the ability of nanosized cerium dioxide to generate basic hydroxyl groups that can deprotonate phenolic groups to form phenolates on the surface. The main pyrolysis products were identified. The possible ways of forming 3,4-dihydroxyphenylethylene, acetylene carboxylic acid, pyrocatechol and phenol from surface complexes of CA were suggested. It was established that on the nanoceria surface effectively occur the decarboxylation, decarbonylation, and dehydration reactions of the CA, which are the desirable processes in biomass conversion technologies.


2002 ◽  
Vol 90 (7) ◽  
Author(s):  
R. Meera ◽  
M.L.P. Reddy

SummaryThe extraction behavior of uranium(VI) from nitric acid solutions has been investigated using mixtures of bis(2,4,4-trimethylpentyl)phosphinic acid (HBTMPP) and trialkylphosphine oxide (Cyanex 923 = TRPO), triphenylphosphine oxide (TPhPO) or tributylphosphate (TBP). The results demonstrate that uranium(VI) is extracted into xylene as UO


Sign in / Sign up

Export Citation Format

Share Document