scholarly journals Novel Power Consumption Reduction Strategy (PCRS) Using Mixed-VTH Cells for Optimizing the Cells on Critical Paths for Low-power SOC

IERI Procedia ◽  
2013 ◽  
Vol 4 ◽  
pp. 231-236 ◽  
Author(s):  
G.J.Y. Lin ◽  
James B. Kuo
VLSI Design ◽  
1999 ◽  
Vol 10 (2) ◽  
pp. 177-202 ◽  
Author(s):  
K. Masselos ◽  
P. Merakos ◽  
T. Stouraitis ◽  
C. E. Goutis

A novel architectural transformation for low power synthesis of inner product computational structures is presented. The proposed transformation reorders the sequence of evaluation of the multiply-accumulate operations that form the inner products. Information related to both coefficients, which are statically determined, and data, which are dynamic, is used to drive the reordering of computation. The reordering of computation reduces the switching activity at the inputs of the computational units but inside them as well leading to power consumption reduction. Different classes of algorithms requiring inner product computation are identified and the problem of computation reordering is formulated for each of them. The target architecture to which the proposed transformation applies is based on a power optimal memory organization and is described in detail. Experimental results for several DSP algorithms show that the proposed transformation leads to significant savings in net switching activity and thus in power consumption.


2021 ◽  
Vol 1714 (1) ◽  
pp. 012042
Author(s):  
J. Bhaskara Veeraveni ◽  
K. Devi Bhawani

Abstract Reducing the consumption of power in VLSI circuits is challenging. A low power circuit in multi-port memories for power consumption reduction in bit lines is presented here. In this circuit the power of wide gates used in memory bit lines is decreased by reducing the voltage swing of the pull-down network. Wide gates were simulated and the results showed 40% lower power consumption. Processors are another component where power dissipation is high. Various methods are used to decrease the power dissipation. A number of methods reduce bus transitions to limit the power dissipation.


2020 ◽  
Vol 64 (1-4) ◽  
pp. 165-172
Author(s):  
Dongge Deng ◽  
Mingzhi Zhu ◽  
Qiang Shu ◽  
Baoxu Wang ◽  
Fei Yang

It is necessary to develop a high homogeneous, low power consumption, high frequency and small-size shim coil for high precision and low-cost atomic spin gyroscope (ASG). To provide the shim coil, a multi-objective optimization design method is proposed. All structural parameters including the wire diameter are optimized. In addition to the homogeneity, the size of optimized coil, especially the axial position and winding number, is restricted to develop the small-size shim coil with low power consumption. The 0-1 linear programming is adopted in the optimal model to conveniently describe winding distributions. The branch and bound algorithm is used to solve this model. Theoretical optimization results show that the homogeneity of the optimized shim coil is several orders of magnitudes better than the same-size solenoid. A simulation experiment is also conducted. Experimental results show that optimization results are verified, and power consumption of the optimized coil is about half of the solenoid when providing the same uniform magnetic field. This indicates that the proposed optimal method is feasible to develop shim coil for ASG.


2016 ◽  
Vol 136 (11) ◽  
pp. 1555-1566 ◽  
Author(s):  
Jun Fujiwara ◽  
Hiroshi Harada ◽  
Takuya Kawata ◽  
Kentaro Sakamoto ◽  
Sota Tsuchiya ◽  
...  

2009 ◽  
Vol E92-C (3) ◽  
pp. 352-355
Author(s):  
Ki-Sang JUNG ◽  
Kang-Jik KIM ◽  
Young-Eun KIM ◽  
Jin-Gyun CHUNG ◽  
Ki-Hyun PYUN ◽  
...  

Author(s):  
A. Ferrerón Labari ◽  
D. Suárez Gracia ◽  
V. Viñals Yúfera

In the last years, embedded systems have evolved so that they offer capabilities we could only find before in high performance systems. Portable devices already have multiprocessors on-chip (such as PowerPC 476FP or ARM Cortex A9 MP), usually multi-threaded, and a powerful multi-level cache memory hierarchy on-chip. As most of these systems are battery-powered, the power consumption becomes a critical issue. Achieving high performance and low power consumption is a high complexity challenge where some proposals have been already made. Suarez et al. proposed a new cache hierarchy on-chip, the LP-NUCA (Low Power NUCA), which is able to reduce the access latency taking advantage of NUCA (Non-Uniform Cache Architectures) properties. The key points are decoupling the functionality, and utilizing three specialized networks on-chip. This structure has been proved to be efficient for data hierarchies, achieving a good performance and reducing the energy consumption. On the other hand, instruction caches have different requirements and characteristics than data caches, contradicting the low-power embedded systems requirements, especially in SMT (simultaneous multi-threading) environments. We want to study the benefits of utilizing small tiled caches for the instruction hierarchy, so we propose a new design, ID-LP-NUCAs. Thus, we need to re-evaluate completely our previous design in terms of structure design, interconnection networks (including topologies, flow control and routing), content management (with special interest in hardware/software content allocation policies), and structure sharing. In CMP environments (chip multiprocessors) with parallel workloads, coherence plays an important role, and must be taken into consideration.


Author(s):  
A. Suresh Babu ◽  
B. Anand

: A Linear Feedback Shift Register (LFSR) considers a linear function typically an XOR operation of the previous state as an input to the current state. This paper describes in detail the recent Wireless Communication Systems (WCS) and techniques related to LFSR. Cryptographic methods and reconfigurable computing are two different applications used in the proposed shift register with improved speed and decreased power consumption. Comparing with the existing individual applications, the proposed shift register obtained >15 to <=45% of decreased power consumption with 30% of reduced coverage area. Hence this proposed low power high speed LFSR design suits for various low power high speed applications, for example wireless communication. The entire design architecture is simulated and verified in VHDL language. To synthesis a standard cell library of 0.7um CMOS is used. A custom design tool has been developed for measuring the power. From the results, it is obtained that the cryptographic efficiency is improved regarding time and complexity comparing with the existing algorithms. Hence, the proposed LFSR architecture can be used for any wireless applications due to parallel processing, multiple access and cryptographic methods.


Author(s):  
Ahmed K. Jameil ◽  
Yasir Amer Abbas ◽  
Saad Al-Azawi

Background: The designed circuits are tested for faults detection in fabrication to determine which devices are defective. The design verification is performed to ensure that the circuit performs the required functions after manufacturing. Design verification is regarded as a test form in both sequential and combinational circuits. The analysis of sequential circuits test is more difficult than in the combinational circuit test. However, algorithms can be used to test any type of sequential circuit regardless of its composition. An important sequential circuit is the finite impulse response (FIR) filters that are widely used in digital signal processing applications. Objective: This paper presented a new design under test (DUT) algorithm for 4-and 8-tap FIR filters. Also, the FIR filter and the proposed DUT algorithm is implemented using field programmable gate arrays (FPGA). Method: The proposed test generation algorithm is implemented in VHDL using Xilinx ISE V14.5 design suite and verified by simulation. The test generation algorithm used FIR filtering redundant faults to obtain a set of target faults for DUT. The fault simulation is used in DUT to assess the benefit of test pattern in fault coverage. Results: The proposed technique provides average reductions of 20 % and 38.8 % in time delay with 57.39 % and 75 % reductions in power consumption and 28.89 % and 28.89 % slices reductions for 4- and 8-tap FIR filter, respectively compared to similar techniques. Conclusions: The results of implementation proved that a high speed and low power consumption design can be achieved. Further, the speed of the proposed architecture is faster than that of existing techniques.


Sign in / Sign up

Export Citation Format

Share Document