The effect of incompletely condensed polyhedral oligomeric silsesquioxanes (POSS) on hybrid film adhesion

2020 ◽  
Vol 103 ◽  
pp. 102719
Author(s):  
Mustafa Kalifa ◽  
Nataša Z. Tomić ◽  
Ahmed A. Algellai ◽  
Marija M. Vuksanović ◽  
Vesna Radojević ◽  
...  
Author(s):  
Yih-Cheng Shih ◽  
E. L. Wilkie

Tungsten silicides (WSix) have been successfully used as the gate materials in self-aligned GaAs metal-semiconductor-field- effect transistors (MESFET). Thermal stability of the WSix/GaAs Schottky contact is of major concern since the n+ implanted source/drain regions must be annealed at high temperatures (∼ 800°C). WSi0.6 was considered the best composition to achieve good device performance due to its low stress and excellent thermal stability of the WSix/GaAs interface. The film adhesion and the uniformity in barrier heights and ideality factors of the WSi0.6 films have been improved by depositing a thin layer of pure W as the first layer on GaAs prior to WSi0.6 deposition. Recently WSi0.1 has been used successfully as the gate material in 1x10 μm GaAs FET's on the GaAs substrates which were sputter-cleaned prior to deposition. These GaAs FET's exhibited uniform threshold voltages across a 51 mm wafer with good film adhesion after annealing at 800°C for 10 min.


RSC Advances ◽  
2015 ◽  
Vol 5 (107) ◽  
pp. 88471-88476 ◽  
Author(s):  
Tianqi Guo ◽  
Keyu Han ◽  
Liping Heng ◽  
Moyuan Cao ◽  
Lei Jiang

A highly ordered open-pore hybrid film was fabricated by controlling the substrate roughness and wettability. The composite with different wettability on the two side resulted in an attractive unidirectional water-penetration function (see figure).


Author(s):  
Ignazio Blanco ◽  
Traian Zaharescu

AbstractA series of ethylene-propylene-diene-terpolymer (EPDM)/polyhedral oligomeric silsesquioxane (POSS) composites at different percentage of POSS were prepared and subjected to γ-irradiation. Both irradiated and non-irradiated EPDM and composites were investigated by the means of thermal analysis to verify if the presence of POSS molecules is able to reduce the oxidation level of free radicals generated during the degradation and to evaluate the effects of the irradiation. EPDM composites at 1, 3 and 5 mass% of POSS were thus degraded in a thermogravimetric (TG) balance in dynamic heating conditions (25–700 °C), in both inert and oxidative atmosphere by flowing nitrogen and air respectively. Thermal characterization was then completed by carrying out Differential Scanning Calorimetry (DSC) analysis from sub-ambient to better highlight the melting of the polymer and polymer composites occurring just above the room temperature. FTIR spectroscopy was also performed for the prepared samples to check the presence of the molecular filler in the composites and for the TG’s residue at 700 °C, in order to evaluate its nature. DSC and TGA parameters were detected and discussed to have information about the effect of the degradation’s environment, the effect of irradiation on polymer stabilization and the effect of POSS content in the polymer matrix.


2021 ◽  
Vol 35 (5) ◽  
pp. 4587-4595
Author(s):  
Shiyang Wang ◽  
Yang Liu ◽  
Ke Lu ◽  
Wenbin Cai ◽  
Yulin Jie ◽  
...  
Keyword(s):  

Polymers ◽  
2021 ◽  
Vol 13 (10) ◽  
pp. 1564
Author(s):  
Jong Tae Leem ◽  
Woong Cheol Seok ◽  
Ji Beom Yoo ◽  
Sangkug Lee ◽  
Ho Jun Song

EPOSS of polyhedral oligomeric silsesquioxanes (POSS) mixture structure and LPSQ of ladder-like polysilsesquioxane (LPSQ) structure were synthesized via sol–gel reaction. EPSQ had a high molecular weight due to polycondensation by potassium carbonate. The EPSQ film showed uniform surface morphology due to regular double-stranded structure. In contrast, the EPOSS-coated film showed nonuniform surface morphology due to strong aggregation. Due to the aggregation, the EPOSS film had shorter d-spacing (d1) than the EPSQ film in XRD analysis. In pencil hardness and nanoindentation analysis, EPSQ film showed higher hardness than the EPOSS film due to regular double-stranded structure. In addition, in the in-folding (r = 0.5 mm) and out-folding (r = 5 mm) tests, the EPSQ film did not crack unlike the EPOSS coated film.


Molecules ◽  
2021 ◽  
Vol 26 (2) ◽  
pp. 325
Author(s):  
Nitin Chandra teja Dadi ◽  
Matúš Dohál ◽  
Veronika Medvecká ◽  
Juraj Bujdák ◽  
Kamila Koči ◽  
...  

This research was aimed at the preparation of a hybrid film based on a layered silicate saponite (Sap) with the immobilized photosensitizer phloxine B (PhB). Sap was selected because of its high cation exchange capacity, ability to exfoliate into nanolayers, and to modify different surfaces. The X-ray diffraction of the films confirmed the intercalation of both the surfactant and PhB molecules in the Sap film. The photosensitizer retained its photoactivity in the hybrid films, as shown by fluorescence spectra measurements. The water contact angles and the measurement of surface free energy demonstrated the hydrophilic nature of the hybrid films. Antimicrobial effectiveness, assessed by the photodynamic inactivation on hybrid films, was tested against a standard strain and against methicillin-resistant bacteria of Staphylococcus aureus (MRSA). One group of samples was irradiated (green LED light; 2.5 h) and compared to nonirradiated ones. S. aureus strains manifested a reduction in growth from 1-log10 to over 3-log10 compared to the control samples with Sap only, and defects in S. aureus cells were proven by scanning electron microscopy. The results proved the optimal photo-physical properties and anti-MRSA potential of this newly designed hybrid system that reflects recent progress in the modification of surfaces for various medical applications.


Sign in / Sign up

Export Citation Format

Share Document