scholarly journals KaiC from a cyanobacterium Gloeocapsa sp. PCC 7428 retains functional and structural properties required as the core of circadian clock system

2019 ◽  
Vol 131 ◽  
pp. 67-73 ◽  
Author(s):  
Atsushi Mukaiyama ◽  
Dongyan Ouyang ◽  
Yoshihiko Furuike ◽  
Shuji Akiyama
10.37236/1381 ◽  
1998 ◽  
Vol 5 (1) ◽  
Author(s):  
Stephan Brandt ◽  
Tomaž Pisanski

The core is the unique homorphically minimal subgraph of a graph. A triangle-free graph with minimum degree $\delta > n/3$ is called dense. It was observed by many authors that dense triangle-free graphs share strong structural properties and that the natural way to describe the structure of these graphs is in terms of graph homomorphisms. One infinite sequence of cores of dense maximal triangle-free graphs was known. All graphs in this sequence are 3-colourable. Only two additional cores with chromatic number 4 were known. We show that the additional graphs are the initial terms of a second infinite sequence of cores.


2004 ◽  
Vol 101 (38) ◽  
pp. 13927-13932 ◽  
Author(s):  
T. Nishiwaki ◽  
Y. Satomi ◽  
M. Nakajima ◽  
C. Lee ◽  
R. Kiyohara ◽  
...  

2013 ◽  
Vol 647 ◽  
pp. 391-395
Author(s):  
Liu Sen ◽  
Song Liu

Regulation of daily physiological functions with approximate a 24-hour periodicity, or circadian rhythms, is a characteristic of eukaryotes. So far, cyanobacteria are only known prokaryotes reported to possess circadian rhythmicity. The circadian system in cyanobacteria comprises both a post-translational oscillator (PTO) and a transcriptional/translational feedback loop (TTFL). The PTO can be reconstituted in vitro with three purified proteins (KaiA, KaiB, and KaiC) with the existence of ATP. Phase of the nanoclockwork has been associated with the phosphorylation states of KaiC, with KaiA promoting the phosphorylation of KaiC, and KaiB de-phosphorylating KaiC. Here we studied the evolution of the KaiB protein. The result will be helpful in understanding the evolution of the circadian clock system.


2009 ◽  
Vol 11 (2) ◽  
pp. 215-220 ◽  
Author(s):  
Giovanni Severino ◽  
Mirko Manchia ◽  
Paolo Contu ◽  
Alessio Squassina ◽  
Simona Lampus ◽  
...  

2020 ◽  
Vol 11 (1) ◽  
Author(s):  
Huan Meng ◽  
Naomi M. Gonzales ◽  
David M. Lonard ◽  
Nagireddy Putluri ◽  
Bokai Zhu ◽  
...  

AbstractA distinct 12-hour clock exists in addition to the 24-hour circadian clock to coordinate metabolic and stress rhythms. Here, we show that liver-specific ablation of X-box binding protein 1 (XBP1) disrupts the hepatic 12-hour clock and promotes spontaneous non-alcoholic fatty liver disease (NAFLD). We show that hepatic XBP1 predominantly regulates the 12-hour rhythmicity of gene transcription in the mouse liver and demonstrate that perturbation of the 12-hour clock, but not the core circadian clock, is associated with the onset and progression of this NAFLD phenotype. Mechanistically, we provide evidence that the spliced form of XBP1 (XBP1s) binds to the hepatic 12-hour cistrome to directly regulate the 12-hour clock, with a periodicity paralleling the harmonic activation of the 12-hour oscillatory transcription of many rate-limiting metabolic genes known to have perturbations in human metabolic disease. Functionally, we show that Xbp1 ablation significantly reduces cellular membrane fluidity and impairs lipid homeostasis via rate-limiting metabolic processes in fatty acid monounsaturated and phospholipid remodeling pathways. These findings reveal that genetic disruption of the hepatic 12-hour clock links to the onset and progression of NAFLD development via transcriptional regulator XBP1, and demonstrate a role for XBP1 and the 12-hour clock in the modulation of phospholipid composition and the maintenance of lipid homeostasis.


2019 ◽  
Vol 34 (2) ◽  
pp. 131-143 ◽  
Author(s):  
Jiajia Li ◽  
Renee Yin Yu ◽  
Farida Emran ◽  
Brian E. Chen ◽  
Michael E. Hughes

The circadian clock is an evolutionarily conserved mechanism that generates the rhythmic expression of downstream genes. The core circadian clock drives the expression of clock-controlled genes, which in turn play critical roles in carrying out many rhythmic physiological processes. Nevertheless, the molecular mechanisms by which clock output genes orchestrate rhythmic signals from the brain to peripheral tissues are largely unknown. Here we explored the role of one rhythmic gene, Achilles, in regulating the rhythmic transcriptome in the fly head. Achilles is a clock-controlled gene in Drosophila that encodes a putative RNA-binding protein. Achilles expression is found in neurons throughout the fly brain using fluorescence in situ hybridization (FISH), and legacy data suggest it is not expressed in core clock neurons. Together, these observations argue against a role for Achilles in regulating the core clock. To assess its impact on circadian mRNA rhythms, we performed RNA sequencing (RNAseq) to compare the rhythmic transcriptomes of control flies and those with diminished Achilles expression in all neurons. Consistent with previous studies, we observe dramatic upregulation of immune response genes upon knock-down of Achilles. Furthermore, many circadian mRNAs lose their rhythmicity in Achilles knock-down flies, suggesting that a subset of the rhythmic transcriptome is regulated either directly or indirectly by Achilles. These Achilles-mediated rhythms are observed in genes involved in immune function and in neuronal signaling, including Prosap, Nemy and Jhl-21. A comparison of RNAseq data from control flies reveals that only 42.7% of clock-controlled genes in the fly brain are rhythmic in both males and females. As mRNA rhythms of core clock genes are largely invariant between the sexes, this observation suggests that sex-specific mechanisms are an important, and heretofore under-appreciated, regulator of the rhythmic transcriptome.


Sign in / Sign up

Export Citation Format

Share Document