scholarly journals Genome-Wide Identification, Evolution, and Expression Analysis of TPS and TPP Gene Families in Brachypodium distachyon

Plants ◽  
2019 ◽  
Vol 8 (10) ◽  
pp. 362 ◽  
Author(s):  
Song Wang ◽  
Kai Ouyang ◽  
Kai Wang

Trehalose biosynthesis enzyme homologues in plants contain two families, trehalose-6-phosphate synthases (TPSs) and trehalose-6-phosphate phosphatases (TPPs). Both families participate in trehalose synthesis and a variety of stress-resistance processes. Here, nine BdTPS and ten BdTPP genes were identified based on the Brachypodium distachyon genome, and all genes were classified into three classes. The Class I and Class II members differed substantially in gene structures, conserved motifs, and protein sequence identities, implying varied gene functions. Gene duplication analysis showed that one BdTPS gene pair and four BdTPP gene pairs are formed by duplication events. The value of Ka/Ks (non-synonymous/synonymous) was less than 1, suggesting purifying selection in these gene families. The cis-elements and gene interaction network prediction showed that many family members may be involved in stress responses. The quantitative real-time reverse transcription (qRT-PCR) results further supported that most BdTPSs responded to at least one stress or abscisic acid (ABA) treatment, whereas over half of BdTPPs were downregulated after stress treatment, implying that BdTPSs play a more important role in stress responses than BdTPPs. This work provides a foundation for the genome-wide identification of the B. distachyon TPS–TPP gene families and a frame for further studies of these gene families in abiotic stress responses.

2022 ◽  
Vol 23 (2) ◽  
pp. 614
Author(s):  
Weiqi Sun ◽  
Mengdi Li ◽  
Jianbo Wang

Brassica napus and its diploid progenitors (B. rapa and B. oleracea) are suitable for studying the problems associated with polyploidization. As an important anti-stress protein, RCI2 proteins widely exist in various tissues of plants, and are crucial to plant growth, development, and stress response. In this study, the RCI2 gene family was comprehensively identified and analyzed, and 9, 9, and 24 RCI2 genes were identified in B. rapa, B. oleracea, and B. napus, respectively. Phylogenetic analysis showed that all of the identified RCI2 genes were divided into two groups, and further divided into three subgroups. Ka/Ks analysis showed that most of the identified RCI2 genes underwent a purifying selection after the duplication events. Moreover, gene structure analysis showed that the structure of RCI2 genes is largely conserved during polyploidization. The promoters of the RCI2 genes in B. napus contained more cis-acting elements, which were mainly involved in plant development and growth, plant hormone response, and stress responses. Thus, B. napus might have potential advantages in some biological aspects. In addition, the changes of RCI2 genes during polyploidization were also discussed from the aspects of gene number, gene structure, gene relative location, and gene expression, which can provide reference for future polyploidization analysis.


2020 ◽  
Vol 11 ◽  
Author(s):  
Mohamed Abu-Farha ◽  
Salman Al-Sabah ◽  
Maha M. Hammad ◽  
Prashantha Hebbar ◽  
Arshad Mohamed Channanath ◽  
...  

COVID-19 is caused by Severe Acute Respiratory Syndrome Coronavirus-2, which has infected over thirty eight million individuals worldwide. Emerging evidence indicates that COVID-19 patients are at a high risk of developing coagulopathy and thrombosis, conditions that elevate levels of D-dimer. It is believed that homocysteine, an amino acid that plays a crucial role in coagulation, may also contribute to these conditions. At present, multiple genes are implicated in the development of these disorders. For example, single-nucleotide polymorphisms (SNPs) in FGG, FGA, and F5 mediate increases in D-dimer and SNPs in ABO, CBS, CPS1 and MTHFR mediate differences in homocysteine levels, and SNPs in TDAG8 associate with Heparin-induced Thrombocytopenia. In this study, we aimed to uncover the genetic basis of the above conditions by examining genome-wide associations and tissue-specific gene expression to build a molecular network. Based on gene ontology, we annotated various SNPs with five ancestral terms: pulmonary embolism, venous thromboembolism, vascular diseases, cerebrovascular disorders, and stroke. The gene-gene interaction network revealed three clusters that each contained hallmark genes for D-dimer/fibrinogen levels, homocysteine levels, and arterial/venous thromboembolism with F2 and F5 acting as connecting nodes. We propose that genotyping COVID-19 patients for SNPs examined in this study will help identify those at greatest risk of complications linked to thrombosis.


Author(s):  
Fei Shen ◽  
Wensong Cai ◽  
Xiaoxiong Gan ◽  
Jianhua Feng ◽  
Zhen Chen ◽  
...  

The number of hyperthyroidism patients is increasing these years. As a disease that can lead to cardiovascular disease, it brings great potential health risks to humans. Since hyperthyroidism can induce the occurrence of many diseases, studying its genetic factors will promote the early diagnosis and treatment of hyperthyroidism and its related diseases. Previous studies have used genome-wide association analysis (GWAS) to identify genes related to hyperthyroidism. However, these studies only identify significant sites related to the disease from a statistical point of view and ignore the complex regulation relationship between genes. In addition, mutation is not the only genetic factor of causing hyperthyroidism. Identifying hyperthyroidism-related genes from gene interactions would help researchers discover the disease mechanism. In this paper, we purposed a novel machine learning method for identifying hyperthyroidism-related genes based on gene interaction network. The method, which is called “RW-RVM,” is a combination of Random Walk (RW) and Relevance Vector Machines (RVM). RW was implemented to encode the gene interaction network. The features of genes were the regulation relationship between genes and non-coding RNAs. Finally, multiple RVMs were applied to identify hyperthyroidism-related genes. The result of 10-cross validation shows that the area under the receiver operating characteristic curve (AUC) of our method reached 0.9, and area under the precision-recall curve (AUPR) was 0.87. Seventy-eight novel genes were found to be related to hyperthyroidism. We investigated two genes of these novel genes with existing literature, which proved the accuracy of our result and method.


2021 ◽  
Vol 6 (1) ◽  
Author(s):  
Hua Yu ◽  
Lu Lu ◽  
Ming Chen ◽  
Chen Li ◽  
Jin Zhang

AbstractMany of genes mediating Known Drug-Disease Association (KDDA) are escaped from experimental detection. Identifying of these genes (hidden genes) is of great significance for understanding disease pathogenesis and guiding drug repurposing. Here, we presented a novel computational tool, called KDDANet, for systematic and accurate uncovering the hidden genes mediating KDDA from the perspective of genome-wide functional gene interaction network. KDDANet demonstrated the competitive performances in both sensitivity and specificity of identifying genes in mediating KDDA in comparison to the existing state-of-the-art methods. Case studies on Alzheimer’s disease (AD) and obesity uncovered the mechanistic relevance of KDDANet predictions. Furthermore, when applied with multiple types of cancer-omics datasets, KDDANet not only recapitulated known genes mediating KDDAs related to cancer, but also revealed novel candidates that offer new biological insights. Importantly, KDDANet can be used to discover the shared genes mediating multiple KDDAs. KDDANet can be accessed at http://www.kddanet.cn and the code can be freely downloaded at https://github.com/huayu1111/KDDANet.


2022 ◽  
Vol 23 (1) ◽  
pp. 515
Author(s):  
Hui Wei ◽  
Ali Movahedi ◽  
Guoyuan Liu ◽  
Yixin Li ◽  
Shiwei Liu ◽  
...  

Poplar is an illustrious industrial woody plant with rapid growth, providing a range of materials, and having simple post-treatment. Various kinds of environmental stresses limit its output. Plant annexin (ANN) is a calcium-dependent phospholipid-binding protein involved in plant metabolism, growth and development, and cooperatively regulating drought resistance, salt tolerance, and various stress responses. However, the features of the PtANN gene family and different stress responses remain unknown in poplar. This study identified 12 PtANN genes in the P. trichocarpa whole-genome and PtANNs divided into three subfamilies based on the phylogenetic tree. The PtANNs clustered into the same clade shared similar gene structures and conserved motifs. The 12 PtANN genes were located in ten chromosomes, and segmental duplication events were illustrated as the main duplication method. Additionally, the PtANN4 homogenous with AtANN1 was detected localized in the cytoplasm and plasma membrane. In addition, expression levels of PtANNs were induced by multiple abiotic stresses, which indicated that PtANNs could widely participate in response to abiotic stress. These results revealed the molecular evolution of PtANNs and their profiles in response to abiotic stress.


PeerJ ◽  
2020 ◽  
Vol 8 ◽  
pp. e9328
Author(s):  
Chunxiao Liu ◽  
Xiaoyang Xu ◽  
Jialiang Kan ◽  
Zong ming Cheng ◽  
Youhong Chang ◽  
...  

Transcription factors regulate gene expression in response to various external and internal cues by activating or suppressing downstream genes. Significant progress has been made in identifying and characterizing the Cysteine3Histidine (C3H) gene family in several dicots and monocots. They are characterized by their signature motif of three cysteine and one histidine residues, and reportedly play important roles in regulation of plant growth, developmental processes and environmental responses. In this study, we performed genome-wide and deep analysis of putative C3H genes, and a total of 117 PbeC3H members, were identified in P. betulaefolia and classified into 12 groups. Results were supported by the gene structural characteristics and phylogenetic analysis. These genes were unevenly distributed on 17 chromosomes. The gene structures of the C3H genes were relatively complex but conserved in each group. The C3H genes experienced a WGD event that occurred in the ancestor genome of P. betulaefolia and apple before their divergence based on the synonymous substitutions (Ks) values. There were 35 and 37 pairs of paralogous genes in the P. betulaefolia and apple genome, respectively, and 87 pairs of orthologous genes between P. betulaefolia and apple were identified. Except for one orthologous pairs PbeC3H66 and MD05G1311700 which had undergone positive selection, the other C3H genes had undergone purifying selection. Expression profiles showed that high salinity stress could influence the expression level of C3H genes in P. betulaefolia. Four members were responsive to salt stress in roots, nine were responsive to salt stress in leaves and eight showed inhibited expression in leaves. Results suggested important roles of PbeC3H genes in response to salt stress and will be useful for better understanding the complex functions of the C3H genes, and will provide excellent candidates for salt-tolerance improvement.


2021 ◽  
Vol 12 ◽  
Author(s):  
Liwei Zheng ◽  
Yingli Yang ◽  
Shengjie Ma ◽  
Wenming Wang ◽  
Jimeng Zhang ◽  
...  

Brassinosteroid signaling downstream genes regulate many important agronomic traits in rice. However, information on such genes is limited in Arabidopsis and Rosaceae species. We identified these genes in Arabidopsis and nine Rosaceae species. They were, respectively, named based on chromosomal locations. Segmental duplication and whole-genome duplication under purifying selection, as determined by Ka/Ks analysis, likely contributed to Rosaceae gene expansion. Apple (Malus domestica), Arabidopsis, and rice genes were generally similar, while several Rosaceae genes differed from their rice homologs in various characteristics, such as gene length, subcellular localization, transmembrane topology, conserved domains, secondary structures, and responses to external signals. The brassinosteroid downstream genes in apple were, respectively, induced or repressed by five phytohormones. Furthermore, these apple downstream genes were differentially expressed in different apple grafting combinations (“Nagafu No. 2”/“Malling 9” and “Nagafu No. 2”/“Nagafu No. 2”) and long–short shoot varieties (“Yanfu No. 6” and “Nagafu No. 2”). Responses of the MdBZR genes to diverse stress signals were examined and candidate hub genes were identified. These findings indicated that several brassinosteroid signaling downstream genes in Rosaceae functionally differed from their rice homologs, and certain apple genes may play roles in plant height and stress responses. This study provided valuable information and presented enriched biological theories on brassinosteroid signaling downstream genes in apple. Identification of such genes serve to help expand apple breeding and growth. This study provides useful information for brassinosteroid signaling downstream genes.


2021 ◽  
Vol 12 ◽  
Author(s):  
Genís Calderer ◽  
Marieke L. Kuijjer

Networks are useful tools to represent and analyze interactions on a large, or genome-wide scale and have therefore been widely used in biology. Many biological networks—such as those that represent regulatory interactions, drug-gene, or gene-disease associations—are of a bipartite nature, meaning they consist of two different types of nodes, with connections only forming between the different node sets. Analysis of such networks requires methodologies that are specifically designed to handle their bipartite nature. Community structure detection is a method used to identify clusters of nodes in a network. This approach is especially helpful in large-scale biological network analysis, as it can find structure in networks that often resemble a “hairball” of interactions in visualizations. Often, the communities identified in biological networks are enriched for specific biological processes and thus allow one to assign drugs, regulatory molecules, or diseases to such processes. In addition, comparison of community structures between different biological conditions can help to identify how network rewiring may lead to tissue development or disease, for example. In this mini review, we give a theoretical basis of different methods that can be applied to detect communities in bipartite biological networks. We introduce and discuss different scores that can be used to assess the quality of these community structures. We then apply a wide range of methods to a drug-gene interaction network to highlight the strengths and weaknesses of these methods in their application to large-scale, bipartite biological networks.


PeerJ ◽  
2017 ◽  
Vol 5 ◽  
pp. e3955 ◽  
Author(s):  
Yiling Niu ◽  
Tingting Zhao ◽  
Xiangyang Xu ◽  
Jingfu Li

Solanum lycopersicum, belonging to Solanaceae, is one of the commonly used model plants. The GRAS genes are transcriptional regulators, which play a significant role in plant growth and development, and the functions of several GRAS genes have been recognized, such as, axillary shoot meristem formation, radial root patterning, phytohormones (gibberellins) signal transduction, light signaling, and abiotic/biotic stress; however, only a few of these were identified and functionally characterized. In this study, a gene family was analyzed comprehensively with respect to phylogeny, gene structure, chromosomal localization, and expression pattern; the 54 GRAS members were screened from tomato by bioinformatics for the first time. The GRAS genes among tomato, Arabidopsis, rice, and grapevine were rebuilt to form a phylogenomic tree, which was divided into ten groups according to the previous classification of Arabidopsis and rice. A multiple sequence alignment exhibited the typical GRAS domain and conserved motifs similar to other gene families. Both the segmental and tandem duplications contributed significantly to the expansion and evolution of the GRAS gene family in tomato; the expression patterns across a variety of tissues and biotic conditions revealed potentially different functions of GRAS genes in tomato development and stress responses. Altogether, this study provides valuable information and robust candidate genes for future functional analysis for improving the resistance of tomato growth.


Sign in / Sign up

Export Citation Format

Share Document