Characterization of mechanical strength and hydrogen permeability of a PdCu alloy film prepared by one-step electroplating for hydrogen separation and membrane reactors

2019 ◽  
Vol 44 (16) ◽  
pp. 8290-8297 ◽  
Author(s):  
Naruki Endo ◽  
Yoshitomo Furukawa ◽  
Kiyotaka Goshome ◽  
Satoshi Yaegashi ◽  
Kin-ichi Mashiko ◽  
...  
2018 ◽  
Vol 160 ◽  
pp. 03001
Author(s):  
Mengqi Yao ◽  
Weilin Chen ◽  
Wencheng Hu

This work reports the porous nicke-iron alloy film supported on stainless steel mesh as freestanding electrode for enhanced oxygen evolution reaction (OER) catalyst prepared from an one step electrodeposition method. Results indicated that the porous nickle-iron alloy film exhibits a low overpotential of 270 mV at 10 mA cm-2 and excellent electroconductibility. The superior OER properties can be attributed to its novel synthetic process, conductive substrate and porous structure. This work will provide a new strategy to fabricate alloy film for OER electrocatalyst.


Polymers ◽  
2020 ◽  
Vol 13 (1) ◽  
pp. 136
Author(s):  
Bimalendu Ray ◽  
Martin Schütz ◽  
Shuvam Mukherjee ◽  
Subrata Jana ◽  
Sayani Ray ◽  
...  

Naturally occurring polysaccharide sulfates are highly diverse, owning variations in the backbone structure, linkage pattern and stereochemistry, branching diversity, sulfate content and positions of sulfate group(s). These structural characteristics bring about diverse sulfated polymers with dissimilar negative charge densities and structure–activity relationships. Herein, we start with a short discussion of techniques needed for extraction, purification, chemical sulfation, and structural characterization of polysaccharides. Processes of isolation and sulfation of plant-derived polysaccharides are challenging and usually involve two steps. In this context, we describe an integrated extraction-sulfation procedure that produces polysaccharide sulfates from natural products in one step, thereby generating additional pharmacological activities. Finally, we provide examples of the spectrum of natural source-derived polysaccharides possessing specific features of bioactivity, in particular focusing on current aspects of antiviral drug development and drug–target interaction. Thus, the review presents a detailed view on chemically engineered polysaccharides, especially sulfated derivatives, and underlines their promising biomedical perspectives.


Electronics ◽  
2021 ◽  
Vol 10 (11) ◽  
pp. 1275
Author(s):  
Simone Scafati ◽  
Enza Pellegrino ◽  
Francesco de Paulis ◽  
Carlo Olivieri ◽  
James Drewniak ◽  
...  

The de-embedding of measurement fixtures is relevant for an accurate experimental characterization of radio frequency and digital electronic devices. The standard technique consists in removing the effects of the measurement fixtures by the calculation of the transfer scattering parameters (T-parameters) from the available measured (or simulated) global scattering parameters (S-parameters). The standard de-embedding is achieved by a multiple steps process, involving the S-to-T and subsequent T-to-S parameter conversion. In a typical measurement setup, two fixtures are usually placed before and after the device under test (DUT) allowing the connection of the device to the calibrated vector network analyzer coaxial ports. An alternative method is proposed in this paper: it is based on the newly developed multi-network cascading algorithm. The matrices involved in the fixture-DUT-fixture cascading gives rise to a non-linear set of equations that is in one step analytically solved in closed form, obtaining a unique solution. The method is shown to be effective and at least as accurate as the standard multi-step de-embedding one.


Membranes ◽  
2021 ◽  
Vol 11 (4) ◽  
pp. 282
Author(s):  
Leandri Vermaak ◽  
Hein W. J. P. Neomagus ◽  
Dmitri G. Bessarabov

This paper reports on an experimental evaluation of the hydrogen separation performance in a proton exchange membrane system with Pt-Co/C as the anode electrocatalyst. The recovery of hydrogen from H2/CO2, H2/CH4, and H2/NH3 gas mixtures were determined in the temperature range of 100–160 °C. The effects of both the impurity concentration and cell temperature on the separation performance of the cell and membrane were further examined. The electrochemical properties and performance of the cell were determined by means of polarization curves, limiting current density, open-circuit voltage, hydrogen permeability, hydrogen selectivity, hydrogen purity, and cell efficiencies (current, voltage, and power efficiencies) as performance parameters. High purity hydrogen (>99.9%) was obtained from a low purity feed (20% H2) after hydrogen was separated from H2/CH4 mixtures. Hydrogen purities of 98–99.5% and 96–99.5% were achieved for 10% and 50% CO2 in the feed, respectively. Moreover, the use of proton exchange membranes for electrochemical hydrogen separation was unsuccessful in separating hydrogen-rich streams containing NH3; the membrane underwent irreversible damage.


Molecules ◽  
2020 ◽  
Vol 25 (3) ◽  
pp. 593
Author(s):  
Juan Miranda-Pizarro ◽  
Macarena G. Alférez ◽  
M. Dolores Fernández-Martínez ◽  
Eleuterio Álvarez ◽  
Celia Maya ◽  
...  

A straightforward method for the preparation of trisphosphinite ligands in one step, using only commercially available reagents (1,1,1-tris(4-hydroxyphenyl)ethane and chlorophosphines) is described. We have made use of this approach to prepare a small family of four trisphosphinite ligands of formula [CH3C{(C6H4OR2)3], where R stands for Ph (1a), Xyl (1b, Xyl = 2,6-Me2-C6H3), iPr (1c), and Cy (1d). These polyfunctional phosphinites allowed us to investigate their coordination chemistry towards a range of late transition metal precursors. As such, we report here the isolation and full characterization of a number of Au(I), Ag(I), Cu(I), Ir(III), Rh(III) and Ru(II) homotrimetallic complexes, including the structural characterization by X-ray diffraction studies of six of these compounds. We have observed that the flexibility of these trisphosphinites enables a variety of conformations for the different trimetallic species.


2012 ◽  
Vol 600 ◽  
pp. 174-177 ◽  
Author(s):  
Jian Fei Xia ◽  
Zong Hua Wang ◽  
Yan Zhi Xia ◽  
Fei Fei Zhang ◽  
Fu Qiang Zhu ◽  
...  

Zirconia-graphene composite (ZrO2-G) has been successfully synthesized via decomposition of ZrOCl2•6H2O in a water-isopropanol system with dispersed graphene oxide (GO) utilizing Na2S as a precursor could enable the occurrence of the deposition of Zr4+ and the deoxygenation of GO at the same time. Transmission electron microscopy (TEM), Fourier transform infrared spectroscopy (FT-IR) and X-ray diffraction (XRD) techniques were used to characterize the samples. It was found that graphene were fully coated with ZrO2, and the ZrO2 existing in tetragonal phase, which resulted in the formation of two-dimensional composite.


2006 ◽  
Vol 47 (3) ◽  
pp. 148-155 ◽  
Author(s):  
Shin-Kun Ryi ◽  
Jong-Soo Park ◽  
Sung-Hoon Choi ◽  
Sung-Ho Cho ◽  
Sung-Hyun Kim

Sign in / Sign up

Export Citation Format

Share Document