Buspirone transdermal administration for menopausal syndromes, in vitro and in animal model studies

2010 ◽  
Vol 387 (1-2) ◽  
pp. 26-33 ◽  
Author(s):  
Margarita Shumilov ◽  
Elka Touitou
1995 ◽  
Vol 74 (03) ◽  
pp. 868-873 ◽  
Author(s):  
Silvana Arrighi ◽  
Roberta Rossi ◽  
Maria Giuseppina Borri ◽  
Vladimir Lesnikov ◽  
Marina Lesnikov ◽  
...  

SummaryTo improve the safety of plasma derived factor VIII (FVIII) concentrate, we introduced a final super heat treatment (100° C for 30 min) as additional virus inactivation step applied to a lyophilized, highly purified FVIII concentrate (100 IU/mg of proteins) already virus inactivated using the solvent/detergent (SID) method during the manufacturing process.The efficiency of the super heat treatment was demonstrated in inactivating two non-lipid enveloped viruses (Hepatitis A virus and Poliovirus 1). The loss of FVIII procoagulant activity during the super heat treatment was of about 15%, estimated both by clotting and chromogenic assays. No substantial changes were observed in physical, biochemical and immunological characteristics of the heat treated FVIII concentrate in comparison with those of the FVIII before heat treatment.


Author(s):  
Philip L Tzou ◽  
Kaiming Tao ◽  
Janin Nouhin ◽  
Soo-Yon Rhee ◽  
Benjamin D Hu ◽  
...  

Background: To prioritize the development of antiviral compounds, it is necessary to compare their relative preclinical activity and clinical efficacy. Methods: We reviewed in vitro, animal model, and clinical studies of candidate anti-coronavirus compounds and placed extracted data in an online relational database. Results: As of July 2020, the Coronavirus Antiviral Research Database (CoV-RDB; covdb.stanford.edu) contained >2,400 cell culture, entry assay and biochemical experiments, 240 animal model studies, and 56 clinical studies from >300 published papers. SARS-CoV-2, SARS-CoV, and MERS-CoV account for approximately 85% of the data. Approximately 75% of experiments involved compounds with a known or likely mechanism of action, including receptor binding inhibitors and monoclonal antibodies (20%); viral protease inhibitors (18%); polymerase inhibitors (9%); interferons (8%); fusion inhibitors (8%); host endosomal trafficking inhibitors (7%); and host protease inhibitors (5%). For 724 compounds with a known or likely mechanism, 95 (13%) are licensed in the US for other indications, 72 (10%) are licensed outside the US or are in human trials, and 557 (77%) are pre-clinical investigational compounds. Conclusion: CoV-RDB facilitates comparisons between different candidate antiviral compounds, thereby helping scientists, clinical investigators, public health officials, and funding agencies prioritize the most promising compounds and repurposed drugs for further development.


2021 ◽  
Vol 33 ◽  
pp. 102139
Author(s):  
Z. Kayani ◽  
R. Dehdari Vais ◽  
E. Soratijahromi ◽  
S. Mohammadi ◽  
N. Sattarahmady

Bioimpacts ◽  
2020 ◽  
Vol 10 (3) ◽  
pp. 195-203
Author(s):  
Clarence S Yah ◽  
Geoffrey S. Simate

Introduction: The vast diverse products and applications of engineered nanoparticle bio-conjugates (ENPBCs) are increasing, and thus flooding the-markets. However, the data to support risk estimates of ENPBC are limited. While it is important to assess the potential benefits, acceptability and uptake, it is equally important to understand where ENPBCs safety is and how to expand and affirm consumer security concerns. Methods: Online articles were extracted from 2013 to 2016 that pragmatically used xCELLigence real-time cell analysis (RTCA) technology to describe the in-vitro toxicity of ENPBCs. The xCELLigence is a +noninvasive in vitro toxicity monitoring process that mimics exact continuous cellular bio-responses in real-time settings. On the other hand, articles were also extracted from 2008 to 2016 describing the in vivo animal models toxicity of ENPBCs with regards to safety outcomes. Results: Out of 32 of the 121 (26.4%) articles identified from the literature, 23 (71.9%) met the in-vitro xCELLigence and 9(28.1%) complied with the in vivo animal model toxicity inclusion criteria. Of the 23 articles, 4 of them (17.4%) had no size estimation of ENPBCs. The xCELLigence technology provided information on cell interactions, viability, and proliferation process. Eighty-three (19/23) of the in vitro xCELLigence technology studies described ENPBCs as nontoxic or partially nontoxic materials. The in vivo animal model provided further toxicity information where 1(1/9) of the in vivo animal model studies indicated potential animal toxicity while the remaining results recommended ENPPCs as potential candidates for drug therapy though with limited information on toxicity. Conclusion: The results showed that the bioimpacts of ENPBCs either at the in vitro or at in vivo animal model levels are still limited due to insufficient information and data. To keep pace with ENPBCs biomedical products and applications, in vitro, in vivo assays, clinical trials and long-term impacts are needed to validate their usability and uptake. Besides, more real-time ENPBCs-cell impact analyses using xCELLigence are needed to provide significant data and information for further in vivo testing.


Toxics ◽  
2021 ◽  
Vol 9 (10) ◽  
pp. 258
Author(s):  
Monika Sijko ◽  
Lucyna Kozłowska

Population and laboratory studies indicate that exposure to various forms of arsenic (As) is associated with many adverse health effects; therefore, methods are being sought out to reduce them. Numerous studies focus on the effects of nutrients on inorganic As (iAs) metabolism and toxicity, mainly in animal models. Therefore, the aim of this review was to analyze the influence of methionine, betaine, choline, folic acid, vitamin B2, B6, B12 and zinc on the efficiency of iAs metabolism and the reduction of the severity of the whole spectrum of disorders related to iAs exposure. In this review, which includes 58 (in vivo and in vitro studies) original papers, we present the current knowledge in the area. In vitro and in vivo animal studies showed that methionine, choline, folic acid, vitamin B2, B12 and zinc reduced the adverse effects of exposure to iAs in the gastrointestinal, urinary, lymphatic, circulatory, nervous, and reproductive systems. On the other hand, it was observed that these compounds (methionine, choline, folic acid, vitamin B2, B12 and zinc) may increase iAs metabolism and reduce toxicity, whereas their deficiency or excess may impair iAs metabolism and increase iAs toxicity. Promising results of in vivo and in vitro on animal model studies show the possibility of using these nutrients in populations particularly exposed to As.


Author(s):  
Deyan Chen ◽  
Ye Liu ◽  
Fang Zhang ◽  
Qiao You ◽  
Wenyuan Ma ◽  
...  

We reported the discovery of 6-TG inhibition of HSV-1 infection and its inhibitory roles in HSK both in vitro and in vivo . 6-TG was shown to possess at least 10× more potent inhibitory activity against HSV-1 than ACV and GCV and, more importantly, inhibit ACV/GCV-resistant mutant viruses. Animal model studies showed that gel-formulated 6-TG topically applied to eyes locally infected with HSV-1 could significantly inhibit HSV-1 replication, alleviate virus-induced HSK pathogenesis, and improve eye conditions.


Viruses ◽  
2020 ◽  
Vol 12 (9) ◽  
pp. 1006
Author(s):  
Philip L. Tzou ◽  
Kaiming Tao ◽  
Janin Nouhin ◽  
Soo-Yon Rhee ◽  
Benjamin D. Hu ◽  
...  

Background: To prioritize the development of antiviral compounds, it is necessary to compare their relative preclinical activity and clinical efficacy. Methods: We reviewed in vitro, animal model, and clinical studies of candidate anti-coronavirus compounds and placed extracted data in an online relational database. Results: As of August 2020, the Coronavirus Antiviral Research Database (CoV-RDB; covdb.stanford.edu) contained over 2800 cell culture, entry assay, and biochemical experiments, 259 animal model studies, and 73 clinical studies from over 400 published papers. SARS-CoV-2, SARS-CoV, and MERS-CoV account for 85% of the data. Approximately 75% of experiments involved compounds with known or likely mechanisms of action, including monoclonal antibodies and receptor binding inhibitors (21%), viral protease inhibitors (17%), miscellaneous host-acting inhibitors (10%), polymerase inhibitors (9%), interferons (7%), fusion inhibitors (5%), and host protease inhibitors (5%). Of 975 compounds with known or likely mechanism, 135 (14%) are licensed in the U.S. for other indications, 197 (20%) are licensed outside the U.S. or are in human trials, and 595 (61%) are pre-clinical investigational compounds. Conclusion: CoV-RDB facilitates comparisons between different candidate antiviral compounds, thereby helping scientists, clinical investigators, public health officials, and funding agencies prioritize the most promising compounds and repurposed drugs for further development.


Author(s):  
J. Metuzals

It has been demonstrated that the neurofibrillary tangles in biopsies of Alzheimer patients, composed of typical paired helical filaments (PHF), consist also of typical neurofilaments (NF) and 15nm wide filaments. Close structural relationships, and even continuity between NF and PHF, have been observed. In this paper, such relationships are investigated from the standpoint that the PHF are formed through posttranslational modifications of NF. To investigate the validity of the posttranslational modification hypothesis of PHF formation, we have identified in thin sections from frontal lobe biopsies of Alzheimer patients all existing conformations of NF and PHF and ordered these conformations in a hypothetical sequence. However, only experiments with animal model preparations will prove or disprove the validity of the interpretations of static structural observations made on patients. For this purpose, the results of in vitro experiments with the squid giant axon preparations are compared with those obtained from human patients. This approach is essential in discovering etiological factors of Alzheimer's disease and its early diagnosis.


Sign in / Sign up

Export Citation Format

Share Document