scholarly journals Effects of daptomycin in combination with other antimicrobial agents: a review of in vitro and animal model studies

2009 ◽  
Vol 64 (6) ◽  
pp. 1130-1138 ◽  
Author(s):  
J. N. Steenbergen ◽  
J. F. Mohr ◽  
G. M. Thorne
1995 ◽  
Vol 74 (03) ◽  
pp. 868-873 ◽  
Author(s):  
Silvana Arrighi ◽  
Roberta Rossi ◽  
Maria Giuseppina Borri ◽  
Vladimir Lesnikov ◽  
Marina Lesnikov ◽  
...  

SummaryTo improve the safety of plasma derived factor VIII (FVIII) concentrate, we introduced a final super heat treatment (100° C for 30 min) as additional virus inactivation step applied to a lyophilized, highly purified FVIII concentrate (100 IU/mg of proteins) already virus inactivated using the solvent/detergent (SID) method during the manufacturing process.The efficiency of the super heat treatment was demonstrated in inactivating two non-lipid enveloped viruses (Hepatitis A virus and Poliovirus 1). The loss of FVIII procoagulant activity during the super heat treatment was of about 15%, estimated both by clotting and chromogenic assays. No substantial changes were observed in physical, biochemical and immunological characteristics of the heat treated FVIII concentrate in comparison with those of the FVIII before heat treatment.


Author(s):  
Philip L Tzou ◽  
Kaiming Tao ◽  
Janin Nouhin ◽  
Soo-Yon Rhee ◽  
Benjamin D Hu ◽  
...  

Background: To prioritize the development of antiviral compounds, it is necessary to compare their relative preclinical activity and clinical efficacy. Methods: We reviewed in vitro, animal model, and clinical studies of candidate anti-coronavirus compounds and placed extracted data in an online relational database. Results: As of July 2020, the Coronavirus Antiviral Research Database (CoV-RDB; covdb.stanford.edu) contained >2,400 cell culture, entry assay and biochemical experiments, 240 animal model studies, and 56 clinical studies from >300 published papers. SARS-CoV-2, SARS-CoV, and MERS-CoV account for approximately 85% of the data. Approximately 75% of experiments involved compounds with a known or likely mechanism of action, including receptor binding inhibitors and monoclonal antibodies (20%); viral protease inhibitors (18%); polymerase inhibitors (9%); interferons (8%); fusion inhibitors (8%); host endosomal trafficking inhibitors (7%); and host protease inhibitors (5%). For 724 compounds with a known or likely mechanism, 95 (13%) are licensed in the US for other indications, 72 (10%) are licensed outside the US or are in human trials, and 557 (77%) are pre-clinical investigational compounds. Conclusion: CoV-RDB facilitates comparisons between different candidate antiviral compounds, thereby helping scientists, clinical investigators, public health officials, and funding agencies prioritize the most promising compounds and repurposed drugs for further development.


2021 ◽  
Vol 33 ◽  
pp. 102139
Author(s):  
Z. Kayani ◽  
R. Dehdari Vais ◽  
E. Soratijahromi ◽  
S. Mohammadi ◽  
N. Sattarahmady

Bioimpacts ◽  
2020 ◽  
Vol 10 (3) ◽  
pp. 195-203
Author(s):  
Clarence S Yah ◽  
Geoffrey S. Simate

Introduction: The vast diverse products and applications of engineered nanoparticle bio-conjugates (ENPBCs) are increasing, and thus flooding the-markets. However, the data to support risk estimates of ENPBC are limited. While it is important to assess the potential benefits, acceptability and uptake, it is equally important to understand where ENPBCs safety is and how to expand and affirm consumer security concerns. Methods: Online articles were extracted from 2013 to 2016 that pragmatically used xCELLigence real-time cell analysis (RTCA) technology to describe the in-vitro toxicity of ENPBCs. The xCELLigence is a +noninvasive in vitro toxicity monitoring process that mimics exact continuous cellular bio-responses in real-time settings. On the other hand, articles were also extracted from 2008 to 2016 describing the in vivo animal models toxicity of ENPBCs with regards to safety outcomes. Results: Out of 32 of the 121 (26.4%) articles identified from the literature, 23 (71.9%) met the in-vitro xCELLigence and 9(28.1%) complied with the in vivo animal model toxicity inclusion criteria. Of the 23 articles, 4 of them (17.4%) had no size estimation of ENPBCs. The xCELLigence technology provided information on cell interactions, viability, and proliferation process. Eighty-three (19/23) of the in vitro xCELLigence technology studies described ENPBCs as nontoxic or partially nontoxic materials. The in vivo animal model provided further toxicity information where 1(1/9) of the in vivo animal model studies indicated potential animal toxicity while the remaining results recommended ENPPCs as potential candidates for drug therapy though with limited information on toxicity. Conclusion: The results showed that the bioimpacts of ENPBCs either at the in vitro or at in vivo animal model levels are still limited due to insufficient information and data. To keep pace with ENPBCs biomedical products and applications, in vitro, in vivo assays, clinical trials and long-term impacts are needed to validate their usability and uptake. Besides, more real-time ENPBCs-cell impact analyses using xCELLigence are needed to provide significant data and information for further in vivo testing.


Toxics ◽  
2021 ◽  
Vol 9 (10) ◽  
pp. 258
Author(s):  
Monika Sijko ◽  
Lucyna Kozłowska

Population and laboratory studies indicate that exposure to various forms of arsenic (As) is associated with many adverse health effects; therefore, methods are being sought out to reduce them. Numerous studies focus on the effects of nutrients on inorganic As (iAs) metabolism and toxicity, mainly in animal models. Therefore, the aim of this review was to analyze the influence of methionine, betaine, choline, folic acid, vitamin B2, B6, B12 and zinc on the efficiency of iAs metabolism and the reduction of the severity of the whole spectrum of disorders related to iAs exposure. In this review, which includes 58 (in vivo and in vitro studies) original papers, we present the current knowledge in the area. In vitro and in vivo animal studies showed that methionine, choline, folic acid, vitamin B2, B12 and zinc reduced the adverse effects of exposure to iAs in the gastrointestinal, urinary, lymphatic, circulatory, nervous, and reproductive systems. On the other hand, it was observed that these compounds (methionine, choline, folic acid, vitamin B2, B12 and zinc) may increase iAs metabolism and reduce toxicity, whereas their deficiency or excess may impair iAs metabolism and increase iAs toxicity. Promising results of in vivo and in vitro on animal model studies show the possibility of using these nutrients in populations particularly exposed to As.


2016 ◽  
Vol 61 (1) ◽  
Author(s):  
Paul G. Ambrose ◽  
Brian VanScoy ◽  
Haley Conde ◽  
Jennifer McCauley ◽  
Christopher M. Rubino ◽  
...  

ABSTRACT A major clinical challenge for treating infectious diseases is the duration of antimicrobial therapy required to eradicate the pathogen. We hypothesized that modulation of the bacterial replication rate in the context of an antimicrobial exposure is coupled with the rate and extent of bactericidal effects. Herein we describe results from in vitro infection model (one compartment, 24-h model; hollow fiber, 10-day model) studies designed to probe the relationship between the bacterial replication rate and the rate and extent of bactericidal effects in the context of an effective antibiotic exposure. The bacterial replication rate was modulated by adjusting the sodium chloride concentration (0 to 8%) in the growth media (Mueller-Hinton II broth). The study drug selected was levofloxacin, and the challenge isolate was Staphylococcus aureus ATCC 29213 (levofloxacin MIC, 0.125 mg/liter). Within each in vitro infection model, human levofloxacin concentration-time profiles (half-life, 7 h) were simulated and the challenge isolate was subjected to an effective exposure (free-drug area under the concentration-time curve over 24 h divided by the MIC [AUC/MIC ratio], 65; administered as a single dose or daily for 10 days). Over the course of each study, samples were taken from each model for bacterial density determinations and drug concentration assay using liquid chromatography-tandem mass spectrometry (LC-MS/MS). In the 24-h one-compartment in vitro infection model studies, as the bacterial replication rate increased, so too did the rate (slope, 0 to 4 h) and extent (24-h CFU count per milliliter) of bacterial killing. In the 10-day hollow-fiber infection model studies, the times until a reduction of bacterial density to 1 × 102 CFU/ml occurred were 10 days in the media in which the challenge isolate grew slowly and approximately 2 days in the media in which the challenge isolate grew rapidly. Together, these data provide a proof of concept for new adjunctive therapeutic options with respect to the use of antimicrobial agents alone that reduce treatment durations. Such adjunctive therapies hold promise for marked reductions in the tonnage of antimicrobial agents administered to patient populations and selection pressure toward antimicrobial resistance.


Author(s):  
Tomefa E. Asempa ◽  
Kamilia Abdelraouf ◽  
David P. Nicolau

Metallo-β-lactamases (MBL) result in resistance to nearly all β-lactam antimicrobial agents as determined by currently employed susceptibility testing methods. However, recently reported data demonstrating that variable and supra-physiologic zinc concentrations in conventional susceptibility testing media compared with physiologic (bioactive) zinc concentrations may be mediating discordant in vitro-in vivo MBL-resistance. While treatment outcomes in patients appear suggestive of this discordance, these limited data are confounded by comorbidities and combination therapy. To that end, the goal of this review is to evaluate the extent of β-lactam activity against MBL-harboring Enterobacterales in published animal infection model studies and provide contemporary considerations to facilitate the optimization of current antimicrobials and development of novel therapeutics.


Author(s):  
Deyan Chen ◽  
Ye Liu ◽  
Fang Zhang ◽  
Qiao You ◽  
Wenyuan Ma ◽  
...  

We reported the discovery of 6-TG inhibition of HSV-1 infection and its inhibitory roles in HSK both in vitro and in vivo . 6-TG was shown to possess at least 10× more potent inhibitory activity against HSV-1 than ACV and GCV and, more importantly, inhibit ACV/GCV-resistant mutant viruses. Animal model studies showed that gel-formulated 6-TG topically applied to eyes locally infected with HSV-1 could significantly inhibit HSV-1 replication, alleviate virus-induced HSK pathogenesis, and improve eye conditions.


Sign in / Sign up

Export Citation Format

Share Document