Effects of peak temperatures and cooling rates on delta ferrite formation and mechanical properties for heat affected zones in 9Cr-RAFM steel

Author(s):  
Jian Wang ◽  
Kai Zhu ◽  
Jinpeng Zhou ◽  
Xiaofeng Lu
2001 ◽  
Author(s):  
Ramachandra V. Devireddy ◽  
Michael R. Neidert ◽  
John C. Bischof ◽  
Robert T. Tranquillo

Abstract The effect of freezing on the viability and mechanical strength of bioartificial tissues was determined under a variety of cooling conditions, with the ultimate aim of optimizing the cryopreservation process. Bioartificial tissues (i.e. tissue-equivalents or TEs) were prepared by incubating entrapped human foreskin fibroblasts in collagen gels for a period of 2 weeks. The bioartificial tissues were frozen using a controlled rate freezer at various cooling rates (0.5, 2, 5, 20, 40 and > 1000°C/min or slam freezing). The viability (< 60 min after thawing) of the fibroblasts in the bioartificial tissue was assessed using the Ethidium Homodimer (dead cells stain red) and Hoechst Give cells stain blue) assay. Uniaxial tension experiments were performed on an MTS Microbionix System (Eden Prairie, MN) to assess the post-thaw mechanical properties (Maximum Stiffness; Ultimate Tensile Stress; and Strain to Failure) of the frozen-thawed bioartificial tissue (≤ 3 hours after thawing). The results suggest that cooling rates of either 2 or 5°C/min are optimal for preserving both the cell viability and mechanical properties of the bioartificial tissues, post-freeze. Bioartificial tissues were also frozen using a directional solidification stage at 5°C/min. The post-thaw viability results are comparable in both the directionally cooled and the controlled rate freezer samples. However, the mechanical properties of the directionally cooled samples are significantly different (with a higher maximum stiffness and a lower strain to failure) than those obtained for samples frozen using a controlled rate freezer. This suggests that the directionality of ice propagation into the sample affects the measured mechanical properties.


2014 ◽  
Vol 622-623 ◽  
pp. 174-178
Author(s):  
Ahmed Ismail Zaky Farahat ◽  
Mohamed Kamal Elfawkhry

Two alloys of steel containing nominally 0.45C-1.0Si-2.0Mn-0.8Al and 1.2Al were cast in open air induction furnace. Dilatation testing was carried out to recognize the effect on Aluminum on the different critically transformation temperatures. The alloys were hot forged at 1200°C and then subjected to different cooling rates. Mechanical testing was carried out at room temperature. Optical and SEM microstructure were observed. X-ray diffraction was conducted to observe the microstructure constituents.


2014 ◽  
Vol 783-786 ◽  
pp. 21-26
Author(s):  
Xiao Jun Liang ◽  
Ming Jian Hua ◽  
Anthony J. DeArdo

Thermomechanical controlled processing is a very important way to control the microstructure and mechanical properties in low carbon, high strength steel. This is especially true in the case of bainite formation, where the complexity of the austenite-bainite transformation makes the control of the processing important. In this study, a low carbon, high manganese steel containing niobium was investigated to better understand the roles of austenite conditioning and cooling rates on the bainitic phase transformation. Specimens were compared with and without deformation, and followed by seven different cooling rates ranging between 0.5°C/s and 40°C/s. The CCT curves showed that the transformation behaviors and temperatures are very different. The different bainitic microstructures which varied with austenite deformation and cooling rates will be discussed.


Materials ◽  
2020 ◽  
Vol 13 (10) ◽  
pp. 2233
Author(s):  
Tatyana Olshanskaya ◽  
Vladimir Belenkiy ◽  
Elena Fedoseeva ◽  
Elena Koleva ◽  
Dmitriy Trushnikov

The application of electron beam sweep makes it possible to carry out multifocal and multi-beam welding, as well as combine the welding process with local heating or subsequent heat treatment, which is important when preparing products from thermally-hardened materials. This paper presents a method of electron beam welding (EBW) with dynamic beam positioning and its experimental-calculation results regarding the formation of structures and properties of heat-resistant steel welded joints (grade of steel 20Cr3MoWV). The application of electron beam oscillations in welding makes it possible to change the shape and dimensions of welding pool. It also affects the crystallization and formation of a primary structure. It has been established that EBW with dynamic beam positioning increases the weld metal residence time and the thermal effect zone above the critical A3 point, increases cooling time and considerably reduces instantaneous cooling rates as compared to welding without beam sweep. Also, the difference between cooling rates in the depth of a welded joint considerably reduces the degree of structural non-uniformity. A bainitic–martensitic structure is formed in the weld metal and the thermal effect zone throughout the whole depth of fusion. As a result of this structure, the level of mechanical properties of a welded joint produced from EBW with dynamic electron beam positioning approaches that of parent metal to a greater extent than in the case of welding by a static beam. As a consequence, welding of heat-resistant steels reduces the degree of non-uniformity of mechanical properties in the depth of welded joints, as well as decreases the level of hardening of a welded joint in relation to parent metal.


Metals ◽  
2020 ◽  
Vol 10 (6) ◽  
pp. 714 ◽  
Author(s):  
Anderson Vergílio de Queiroz ◽  
Márcio Teodoro Fernandes ◽  
Leonardo Silva ◽  
Rudineli Demarque ◽  
Carlos Roberto Xavier ◽  
...  

Welding is a widely used process that requires continuous developments to meet new application demands of mechanical projects under severe conditions. The homogeneity of metallurgical and mechanical properties in welded joints is the key factor for any welding process. The applications of external magnetic fields, mechanical vibration, and ultrasound are the fundamental steps to achieve success in improving these properties. The present work aimed at determining suitable processing conditions to achieve the desired balance between metallurgical and mechanical properties of 304L steel in TIG (Tungsten Inert Gas) welding under the application of an external magnetic field. The microstructural characteristics of the weld bead were analyzed by optical microscopy (OM) and scanning electron microscopy (SEM). In order to evaluate the mechanical properties of the welded specimen, its Vickers microhardness map and Charpy impact energy at −20 °C were obtained. In addition, corrosion tests were carried out in the saline medium to compare the corrosion resistance of the joint with that of the base metal and that without the magnetic field. It was found that the external magnetic field decreased the percentage of delta ferrite, improved the filling of the weld pool with the weld metal, and decreased the primary and secondary dendritic spacings. The Vickers microhardness value under the magnetic field was found to be lower than that without the magnetic field, and the Charpy test showed no significant variation in energy absorption. Moreover, the welded joint produced under the external magnetic field manifested less resistance to corrosion.


Sign in / Sign up

Export Citation Format

Share Document