Application of a genetic algorithm to optimize the refrigerant circuit of fin-and-tube heat exchangers for maximum heat transfer or shortest tube

2008 ◽  
Vol 47 (8) ◽  
pp. 985-997 ◽  
Author(s):  
Zhigang Wu ◽  
Guoliang Ding ◽  
Kaijian Wang ◽  
Masaharu Fukaya
Author(s):  
Tariq Amin Khan ◽  
Nasir Mehdi Gardezi ◽  
Wei Li ◽  
Yang Zhou ◽  
Zahid Ayub

Abstract The performance on the air side flow is often limited due to its lower heat transfer coefficient. This work is related to numerical simulation to study the significance of employing delta winglets in flat finned and wavy finned-tube heat exchangers. For this purpose, three-dimensional simulation data and a multi-objective genetic algorithm are employed. The angle of attack (α) of delta winglets and Reynolds number varied from 15° to 75° and 500 to 1300, respectively. Employing delta winglets has increased the heat transfer per unit temperature and per unit volume (Z) and the fan power per unit core volume (E) for both flat finned and wavy finned-tube heat exchangers. To achieve a maximum heat transfer enhancement and a minimum friction factor, the optimal values of these parameters (Re and α) are calculated using the Pareto optimal strategy. For this purpose, CFD data, a surrogate model (neural network) and a multi-objective optimization genetic algorithm are combined. Results show that the performance of wavy finned-tube heat exchangers is higher than flat-finned tube heat exchangers which signify the importance of delta winglets in the wavy finned-tube heat exchangers.


Energies ◽  
2021 ◽  
Vol 14 (8) ◽  
pp. 2069
Author(s):  
Eloy Hontoria ◽  
Alejandro López-Belchí ◽  
Nolberto Munier ◽  
Francisco Vera-García

This paper proposes a methodology aiming at determining the most influent working variables and geometrical parameters over the pressure drop and heat transfer during the condensation process of several refrigerant gases using heat exchangers with pipes mini channels technology. A multi-criteria decision making (MCDM) methodology was used; this MCDM includes a mathematical method called SIMUS (Sequential Interactive Modelling for Urban Systems) that was applied to the results of 2543 tests obtained by using a designed refrigeration rig in which five different refrigerants (R32, R134a, R290, R410A and R1234yf) and two different tube geometries were tested. This methodology allows us to reduce the computational cost compared to the use of neural networks or other model development systems. This research shows six variables out of 39 that better define simultaneously the minimum pressure drop, as well as the maximum heat transfer, saturation pressure fluid entering the condenser being the most important one. Another aim of this research was to highlight a new methodology based on operation research for their application to improve the heat transfer energy efficiency and reduce the CO2 footprint derived of the use of heat exchangers with minichannels.


Author(s):  
Limin Wang ◽  
Yufan Bu ◽  
Xun Chen ◽  
Xiaoyang Wei ◽  
Dechao Li ◽  
...  

In previous references, no study has been done on the optimization of rotary regenerative air preheaters (RAPHs) used in coal-fired power plants yet. The key structure parameters of RAPH include rotor radius, fluid section angles and matrix layer heights. In this study, work on the multi-objective design optimization of an RAPH was conducted by combing the thermal hydraulic calculation program which is developed to calculate the temperature and the pressure drop and the non-dominated sorting genetic algorithm (NSGA-II). The maximum heat transfer rate and the minimum friction, namely minimum outlet gas temperature and pressure drop, are considered as the conflicting objectives in the multi-optimization. The layer heights, rotor radius, angles of fluid sections and heights of matrix layers are involved in the design variables in the optimization. The optimization includes three cases in which the rotor radius upper limits are 7 m, 8 m and 9 m respectively. Sets of the Pareto-optimal front points were obtained for the different cases. The obtained optimal air-preheaters with larger upper limit of rotor radius would have better Pareto results. The optimum rotor radius is the upper limit value for different design range of rotor radius. The air-preheaters with larger upper design limit of rotor radius would have better Pareto results. In other words, if the upper design limit of rotor radius is too small, all the Pareto points in this case could not satisfy the performance requirements of heat transfer and friction, and the only way is to increase the upper design limit of rotor radius. The ratio of each optimum fluid section angle is determined by the fluid flow rate of each section.


Author(s):  
Maryam Shafahi ◽  
Kevin Anderson ◽  
Ali Borna ◽  
Michael Lee ◽  
Alex Kim ◽  
...  

This paper reviews the improvement in the heat pipe’s performance using nanofluid as the working fluid. The use of nanofluid enhances heat transfer in the heat pipe due to its improved thermo-physical properties, such as a higher thermal conductivity. Nanofluids proved to be the innovative approach to a variety of applications, such as electronics, medical instruments, and heat exchangers. The influence of different nanoparticles on heat pipe’s performance has been studied. Utilizing nanofluid as the working fluid leads to a significant reduction in heat pipe thermal resistance, an increase in maximum heat transfer, and an improvement of heat pipe thermal performance.


Author(s):  
Devashish Shrivastava ◽  
Tim Ameel

A general analytical development, based on the first and second laws of thermodynamics, is used to define the maximum possible heat transfer in an ideal two-fluid exchanger as well as the maximum possible temperature differences for both fluid streams. It is shown that the conventional expression for the maximum possible heat transfer in ideal two-fluid heat exchangers is a special case of the general expressions. The application of both the first and second laws of thermodynamics in defining the maximum possible heat transfer and maximum possible temperature difference provides only one expression (instead of two different expressions) for either stream which is a measure of both thermal and temperature effectiveness of the particular stream. Differences between the conventional and proposed effectiveness values are presented as functions of the capacity ratio and NTU. These data are used to demonstrate the advantages of the new definitions for maximum heat transfer and maximum temperature difference in ideal two-fluid heat exchangers.


Molecules ◽  
2021 ◽  
Vol 26 (12) ◽  
pp. 3711
Author(s):  
Asifa ◽  
Talha Anwar ◽  
Poom Kumam ◽  
Zahir Shah ◽  
Kanokwan Sitthithakerngkiet

In this modern era, nanofluids are considered one of the advanced kinds of heat transferring fluids due to their enhanced thermal features. The present study is conducted to investigate that how the suspension of molybdenum-disulfide (MoS2) nanoparticles boosts the thermal performance of a Casson-type fluid. Sodium alginate (NaAlg) based nanofluid is contained inside a vertical channel of width d and it exhibits a flow due to the movement of the left wall. The walls are nested in a permeable medium, and a uniform magnetic field and radiation flux are also involved in determining flow patterns and thermal behavior of the nanofluid. Depending on velocity boundary conditions, the flow phenomenon is examined for three different situations. To evaluate the influence of shape factor, MoS2 nanoparticles of blade, cylinder, platelet, and brick shapes are considered. The mathematical modeling is performed in the form of non-integer order operators, and a double fractional analysis is carried out by separately solving Caputo-Fabrizio and Atangana-Baleanu operators based fractional models. The system of coupled PDEs is converted to ODEs by operating the Laplace transformation, and Zakian’s algorithm is applied to approximate the Laplace inversion numerically. The solutions of flow and energy equations are presented in terms of graphical illustrations and tables to discuss important physical aspects of the observed problem. Moreover, a detailed inspection on shear stress and Nusselt number is carried out to get a deep insight into skin friction and heat transfer mechanisms. It is analyzed that the suspension of MoS2 nanoparticles leads to ameliorating the heat transfer rate up to 9.5%. To serve the purpose of achieving maximum heat transfer rate and reduced skin friction, the Atangana-Baleanu operator based fractional model is more effective. Furthermore, it is perceived that velocity and energy functions of the nanofluid exhibit significant variations because of the different shapes of nanoparticles.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Yousef Alihosseini ◽  
Mohammad Reza Azaddel ◽  
Sahel Moslemi ◽  
Mehdi Mohammadi ◽  
Ali Pormohammad ◽  
...  

AbstractIn recent years, PCR-based methods as a rapid and high accurate technique in the industry and medical fields have been expanded rapidly. Where we are faced with the COVID-19 pandemic, the necessity of a rapid diagnosis has felt more than ever. In the current interdisciplinary study, we have proposed, developed, and characterized a state-of-the-art liquid cooling design to accelerate the PCR procedure. A numerical simulation approach is utilized to evaluate 15 different cross-sections of the microchannel heat sink and select the best shape to achieve this goal. Also, crucial heat sink parameters are characterized, e.g., heat transfer coefficient, pressure drop, performance evaluation criteria, and fluid flow. The achieved result showed that the circular cross-section is the most efficient shape for the microchannel heat sink, which has a maximum heat transfer enhancement of 25% compared to the square shape at the Reynolds number of 1150. In the next phase of the study, the circular cross-section microchannel is located below the PCR device to evaluate the cooling rate of the PCR. Also, the results demonstrate that it takes 16.5 s to cool saliva samples in the PCR well, which saves up to 157.5 s for the whole amplification procedure compared to the conventional air fans. Another advantage of using the microchannel heat sink is that it takes up a little space compared to other common cooling methods.


2021 ◽  
Vol 11 (14) ◽  
pp. 6511
Author(s):  
Alessandro Quintino ◽  
Marta Cianfrini ◽  
Ivano Petracci ◽  
Vincenzo Andrea Spena ◽  
Massimo Corcione

Buoyancy-induced convection from a pair of staggered heated vertical plates suspended in free air is studied numerically with the main scope to investigate the basic heat and momentum transfer features and to determine in what measure any independent variable affects the thermal performance of each plate and both plates. A computational code based on the SIMPLE-C algorithm for pressure-velocity coupling is used to solve the system of the governing conservation equations of mass, momentum and energy. Numerical simulations are carried out for different values of the Rayleigh number based on the plate length, as well as of the horizontal separation distance between the plates and their vertical alignment, which are both normalized by the plate length. It is observed that an optimal separation distance between the plates for the maximum heat transfer rate related to the Rayleigh number and the vertical alignment of the plates does exist. Based on the results obtained, suitable dimensionless heat transfer correlations are developed for each plate and for the entire system.


1967 ◽  
Vol 89 (2) ◽  
pp. 163-167 ◽  
Author(s):  
E. G. Filetti ◽  
W. M. Kays

Experimental data are presented for local heat transfer rates near the entrance to a flat duct in which there is an abrupt symmetrical enlargement in flow cross section. Two enlargement area ratios are considered, and Reynolds numbers, based on duct hydraulic diameter, varied from 70,000 to 205,000. It is found that such a flow is characterized by a long stall on one side and a short stall on the other. Maximum heat transfer occurs in both cases at the point of reattachment, followed by a decay toward the values for fully developed duct flow. Empirical equations are given for the Nusselt number at the reattachment point, correlated as functions of duct Reynolds number and enlargement ratio.


Sign in / Sign up

Export Citation Format

Share Document