A General Analytical Approach for Defining Effectiveness in Ideal Two Fluid Heat Exchangers

Author(s):  
Devashish Shrivastava ◽  
Tim Ameel

A general analytical development, based on the first and second laws of thermodynamics, is used to define the maximum possible heat transfer in an ideal two-fluid exchanger as well as the maximum possible temperature differences for both fluid streams. It is shown that the conventional expression for the maximum possible heat transfer in ideal two-fluid heat exchangers is a special case of the general expressions. The application of both the first and second laws of thermodynamics in defining the maximum possible heat transfer and maximum possible temperature difference provides only one expression (instead of two different expressions) for either stream which is a measure of both thermal and temperature effectiveness of the particular stream. Differences between the conventional and proposed effectiveness values are presented as functions of the capacity ratio and NTU. These data are used to demonstrate the advantages of the new definitions for maximum heat transfer and maximum temperature difference in ideal two-fluid heat exchangers.

Energies ◽  
2021 ◽  
Vol 14 (8) ◽  
pp. 2069
Author(s):  
Eloy Hontoria ◽  
Alejandro López-Belchí ◽  
Nolberto Munier ◽  
Francisco Vera-García

This paper proposes a methodology aiming at determining the most influent working variables and geometrical parameters over the pressure drop and heat transfer during the condensation process of several refrigerant gases using heat exchangers with pipes mini channels technology. A multi-criteria decision making (MCDM) methodology was used; this MCDM includes a mathematical method called SIMUS (Sequential Interactive Modelling for Urban Systems) that was applied to the results of 2543 tests obtained by using a designed refrigeration rig in which five different refrigerants (R32, R134a, R290, R410A and R1234yf) and two different tube geometries were tested. This methodology allows us to reduce the computational cost compared to the use of neural networks or other model development systems. This research shows six variables out of 39 that better define simultaneously the minimum pressure drop, as well as the maximum heat transfer, saturation pressure fluid entering the condenser being the most important one. Another aim of this research was to highlight a new methodology based on operation research for their application to improve the heat transfer energy efficiency and reduce the CO2 footprint derived of the use of heat exchangers with minichannels.


Author(s):  
Tariq Amin Khan ◽  
Nasir Mehdi Gardezi ◽  
Wei Li ◽  
Yang Zhou ◽  
Zahid Ayub

Abstract The performance on the air side flow is often limited due to its lower heat transfer coefficient. This work is related to numerical simulation to study the significance of employing delta winglets in flat finned and wavy finned-tube heat exchangers. For this purpose, three-dimensional simulation data and a multi-objective genetic algorithm are employed. The angle of attack (α) of delta winglets and Reynolds number varied from 15° to 75° and 500 to 1300, respectively. Employing delta winglets has increased the heat transfer per unit temperature and per unit volume (Z) and the fan power per unit core volume (E) for both flat finned and wavy finned-tube heat exchangers. To achieve a maximum heat transfer enhancement and a minimum friction factor, the optimal values of these parameters (Re and α) are calculated using the Pareto optimal strategy. For this purpose, CFD data, a surrogate model (neural network) and a multi-objective optimization genetic algorithm are combined. Results show that the performance of wavy finned-tube heat exchangers is higher than flat-finned tube heat exchangers which signify the importance of delta winglets in the wavy finned-tube heat exchangers.


2014 ◽  
Vol 563 ◽  
pp. 133-136
Author(s):  
Chun Lai Tian ◽  
Shan Zhou ◽  
Li Yong Han

A numerical simulation model of heat flux sensors embedded in a flat plate is established. Each sensor has four thermal couples and is inserted into the specified hole. The problem is defined as a steady heat conduction problem with specified boundary conditions and solved by the finite element method. The results of the simulation case demonstrate that the maximum heat flux appears near the sensor shell. The average heat flux of the plate is much smaller than the maximum. Due to exiting of the contact heat resistance, the temperature of the sensor is much lower than that of the plate at horizontal surface. The maximum temperature difference appears on the bottom shell of the sensor. The maximum temperature difference between the simulation results and the experimental data at test points is 1.5 K. The model is verified and could be accepted for the further errors analysis.


Author(s):  
Maryam Shafahi ◽  
Kevin Anderson ◽  
Ali Borna ◽  
Michael Lee ◽  
Alex Kim ◽  
...  

This paper reviews the improvement in the heat pipe’s performance using nanofluid as the working fluid. The use of nanofluid enhances heat transfer in the heat pipe due to its improved thermo-physical properties, such as a higher thermal conductivity. Nanofluids proved to be the innovative approach to a variety of applications, such as electronics, medical instruments, and heat exchangers. The influence of different nanoparticles on heat pipe’s performance has been studied. Utilizing nanofluid as the working fluid leads to a significant reduction in heat pipe thermal resistance, an increase in maximum heat transfer, and an improvement of heat pipe thermal performance.


2017 ◽  
Vol 2017 ◽  
pp. 1-15 ◽  
Author(s):  
Yu-Feng Gan ◽  
Jiin-Yuh Jang

Three-dimensional thermal-mechanical models for the prediction of heat transfer coefficient distributions with different size beams are investigated. H300 × 300, H250 × 250, and H200 × 200 H-shape steel beams are investigated in a controlled cooling process to obtain the design requirements for maximum uniform temperature distributions and minimal residual stress after controlled cooling. An algorithm developed with the conjugated-gradient method is used to optimize the heat transfer coefficient distribution. In a comparison with the three group results, the numerical results indicate that, with the same model and under the same initial temperature (T=850°C) and final temperature (T=550±10°C), the heat transfer coefficients obtained with the conjugated-gradient method can produce more uniform temperature distribution and smaller residual web stress, with objective functions of the final average temperature Tave±ΔT and maximum temperature difference to minimum min⁡ΔTmax(x,y). The maximum temperature difference is decreased by 57°C, 74°C, and 75°C for Case  1, Case  2, and Case  3, respectively, the surface maximum temperature difference is decreased by 60~80°C for three cases, and the residual stress at the web can be reduced by 20~40 MPa for three cases.


Molecules ◽  
2021 ◽  
Vol 26 (12) ◽  
pp. 3711
Author(s):  
Asifa ◽  
Talha Anwar ◽  
Poom Kumam ◽  
Zahir Shah ◽  
Kanokwan Sitthithakerngkiet

In this modern era, nanofluids are considered one of the advanced kinds of heat transferring fluids due to their enhanced thermal features. The present study is conducted to investigate that how the suspension of molybdenum-disulfide (MoS2) nanoparticles boosts the thermal performance of a Casson-type fluid. Sodium alginate (NaAlg) based nanofluid is contained inside a vertical channel of width d and it exhibits a flow due to the movement of the left wall. The walls are nested in a permeable medium, and a uniform magnetic field and radiation flux are also involved in determining flow patterns and thermal behavior of the nanofluid. Depending on velocity boundary conditions, the flow phenomenon is examined for three different situations. To evaluate the influence of shape factor, MoS2 nanoparticles of blade, cylinder, platelet, and brick shapes are considered. The mathematical modeling is performed in the form of non-integer order operators, and a double fractional analysis is carried out by separately solving Caputo-Fabrizio and Atangana-Baleanu operators based fractional models. The system of coupled PDEs is converted to ODEs by operating the Laplace transformation, and Zakian’s algorithm is applied to approximate the Laplace inversion numerically. The solutions of flow and energy equations are presented in terms of graphical illustrations and tables to discuss important physical aspects of the observed problem. Moreover, a detailed inspection on shear stress and Nusselt number is carried out to get a deep insight into skin friction and heat transfer mechanisms. It is analyzed that the suspension of MoS2 nanoparticles leads to ameliorating the heat transfer rate up to 9.5%. To serve the purpose of achieving maximum heat transfer rate and reduced skin friction, the Atangana-Baleanu operator based fractional model is more effective. Furthermore, it is perceived that velocity and energy functions of the nanofluid exhibit significant variations because of the different shapes of nanoparticles.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Yousef Alihosseini ◽  
Mohammad Reza Azaddel ◽  
Sahel Moslemi ◽  
Mehdi Mohammadi ◽  
Ali Pormohammad ◽  
...  

AbstractIn recent years, PCR-based methods as a rapid and high accurate technique in the industry and medical fields have been expanded rapidly. Where we are faced with the COVID-19 pandemic, the necessity of a rapid diagnosis has felt more than ever. In the current interdisciplinary study, we have proposed, developed, and characterized a state-of-the-art liquid cooling design to accelerate the PCR procedure. A numerical simulation approach is utilized to evaluate 15 different cross-sections of the microchannel heat sink and select the best shape to achieve this goal. Also, crucial heat sink parameters are characterized, e.g., heat transfer coefficient, pressure drop, performance evaluation criteria, and fluid flow. The achieved result showed that the circular cross-section is the most efficient shape for the microchannel heat sink, which has a maximum heat transfer enhancement of 25% compared to the square shape at the Reynolds number of 1150. In the next phase of the study, the circular cross-section microchannel is located below the PCR device to evaluate the cooling rate of the PCR. Also, the results demonstrate that it takes 16.5 s to cool saliva samples in the PCR well, which saves up to 157.5 s for the whole amplification procedure compared to the conventional air fans. Another advantage of using the microchannel heat sink is that it takes up a little space compared to other common cooling methods.


2021 ◽  
Vol 11 (14) ◽  
pp. 6511
Author(s):  
Alessandro Quintino ◽  
Marta Cianfrini ◽  
Ivano Petracci ◽  
Vincenzo Andrea Spena ◽  
Massimo Corcione

Buoyancy-induced convection from a pair of staggered heated vertical plates suspended in free air is studied numerically with the main scope to investigate the basic heat and momentum transfer features and to determine in what measure any independent variable affects the thermal performance of each plate and both plates. A computational code based on the SIMPLE-C algorithm for pressure-velocity coupling is used to solve the system of the governing conservation equations of mass, momentum and energy. Numerical simulations are carried out for different values of the Rayleigh number based on the plate length, as well as of the horizontal separation distance between the plates and their vertical alignment, which are both normalized by the plate length. It is observed that an optimal separation distance between the plates for the maximum heat transfer rate related to the Rayleigh number and the vertical alignment of the plates does exist. Based on the results obtained, suitable dimensionless heat transfer correlations are developed for each plate and for the entire system.


Sign in / Sign up

Export Citation Format

Share Document