Geometry optimization of thermal interface material with the help of heat propagation speed subjected to a pulsed heat source

2017 ◽  
Vol 111 ◽  
pp. 100-107
Author(s):  
Anjan Sarkar ◽  
Basil Issac
2008 ◽  
Vol 7 (2) ◽  
pp. 1-9
Author(s):  
S. Pranesh

This paper deals with linear stability analysis of the effects resulting from the substitution of the classical Fourier law by the non-classical Maxwell - Cattaneo law in Rayleigh - Benard convection in second order fluid is studies. Coleman-Noll constitutive equaion is used to give a viscoelastic correction. The eigenvalue is obtained for free - free isothernal boundary combination. The classical approach predicts an infinite speed for the propagation of heat. The present non-classical theory involves a wave type heat transport (SECOND SOUND) and does not suffer from the physically unacceptable drawback of infinite heat propagation speed. It is found that the results are noteworthy at short times and the critical eigenvalues are less than the classical ones.


2008 ◽  
Vol 7 (1) ◽  
pp. 26-40
Author(s):  
S. Pranesh

The effects resulting from the substitution of the classical Fourier law by the non-classical Maxwell-Cattaneo law in Rayleigh-Benard convention in micropolar fluid is studied. The classical approach predicts an infinite speed for the propagation of heat. The present non-classical theory involves a wave type heat transport (SECOND SOUND) and does not suffer from the physically unacceptable drawback of infinite heat propagation speed. It is found that the results are noteworthy at short times and the critical sign values are less than the classical ones.


2012 ◽  
Vol 11 (3) ◽  
pp. 193-214
Author(s):  
S Pranesh ◽  
R V Kiran

The effect of non-uniform temperature gradient on the onset of Rayleigh-Bénard magnetoconvection in a Micropolar fluid with Maxwell-Cattaneo law is studied using the Galerkin technique. The eigenvalue is obtained for free-free, rigid-free and rigid-rigid velocity boundary combinations with isothermal condition on the spin-vanishing boundaries. A linear stability analysis is performed. The influence of various parameters on the onset of convection has been analyzed. One linear and five non-linear temperature profiles are considered and their comparative influence on onset of convection is discussed. The classical approach predicts an infinite speed for the propagation of heat. The present non-classical theory involves a wave type heat transport (Second Sound) and does not suffer from the physically unacceptable drawback of infinite heat propagation speed.


2015 ◽  
Vol 14 (3) ◽  
pp. 1-22
Author(s):  
R V Kiran ◽  
Attluri Kalyani

The effect of non-uniform temperature gradient on the onset of Rayleigh-Bénard-Marangoni- Magneto-convection in a Micropolar fluid with Maxwell-Cattaneo law is studied using the Galerkin technique. The eigen value is obtained for rigid-free velocity boundary combination with isothermal and adiabatic condition on the spin-vanishing boundaries. A linear stability analysis is performed. The influence of various parameters on the onset of convection has been analyzed. One linear and five non-linear temperature profiles are considered and their comparative influence on onset is discussed. The classical approach predicts an infinite speed for the propagation of heat.  The present non-classical theory involves a wave type heat transport (Second Sound) and does not suffer from the physically unacceptable drawback of infinite heat propagation speed.


Nanomaterials ◽  
2021 ◽  
Vol 11 (7) ◽  
pp. 1699
Author(s):  
Sriharsha Sudhindra ◽  
Fariborz Kargar ◽  
Alexander A. Balandin

We report on experimental investigation of thermal contact resistance, RC, of the noncuring graphene thermal interface materials with the surfaces characterized by different degree of roughness, Sq. It is found that the thermal contact resistance depends on the graphene loading, ξ, non-monotonically, achieving its minimum at the loading fraction of ξ ~15 wt %. Decreasing the surface roughness by Sq~1 μm results in approximately the factor of ×2 decrease in the thermal contact resistance for this graphene loading. The obtained dependences of the thermal conductivity, KTIM, thermal contact resistance, RC, and the total thermal resistance of the thermal interface material layer on ξ and Sq can be utilized for optimization of the loading fraction of graphene for specific materials and roughness of the connecting surfaces. Our results are important for the thermal management of high-power-density electronics implemented with diamond and other wide-band-gap semiconductors.


2014 ◽  
Vol 49 (22) ◽  
pp. 7844-7854 ◽  
Author(s):  
J. Liu ◽  
U. Sahaym ◽  
I. Dutta ◽  
R. Raj ◽  
M. Renavikar ◽  
...  

2021 ◽  
pp. 002199832110595
Author(s):  
Weontae Oh ◽  
Jong-Seong Bae ◽  
Hyoung-Seok Moon

The microstructural change of graphite was studied after ultrasonic treatment of the graphite. When the graphite solution was treated with varying ultrasonic power and time, the microstructure changed gradually, and accordingly, the thermal conductivity characteristics of the composite containing the as-treated graphite was also different with each other. Thermal conductivity showed the best result in the silicone composite containing graphite prepared under the optimum condition of ultrasonic treatment, and the thermal conductivity of the composite improved proportionally along with the particle size of graphite. When the silicone composite was prepared by using a mixture of inorganic oxides and graphite rather than graphite alone, the thermal conductivity of the silicone composite was further increased. A silicone composite containing graphite was used for LED (light emitting diode) lighting system as a thermal interface material (TIM), and the temperature elevation due to heat generated, while the lighting was actually operated, was analyzed.


Author(s):  
Amer M. Hamdan ◽  
Aric R. McLanahan ◽  
Robert F. Richards ◽  
Cecilia D. Richards

This work presents the characterization of a thermal interface material consisting of an array of mercury micro droplets deposited on a silicon die. Three arrays were tested, a 40 × 40 array (1600 grid) and two 20 × 20 arrays (400 grid). All arrays were assembled on a 4 × 4 mm2 silicon die. An experimental facility which measures the thermal resistance across the mercury array under steady state conditions is described. The thermal interface resistance of the arrays was characterized as a function of the applied load. A thermal interface resistance as low as 0.253 mm2 K W−1 was measured. A model to predict the thermal resistance of a liquid-metal micro droplet array was developed and compared to the experimental results. The model predicts the deformation of the droplet array under an applied load and then the geometry of the deformed droplets is used to predict the thermal resistance of the array. The contact resistance of the mercury arrays was estimated based on the experimental and model data. An average contact resistance was estimated to be 0.14 mm2 K W−1.


Sign in / Sign up

Export Citation Format

Share Document