scholarly journals Analyzing injury severity of motorcycle at-fault crashes using machine learning techniques, decision tree and logistic regression models

Author(s):  
Mahdi Rezapour ◽  
Amirarsalan Mehrara Molan ◽  
Khaled Ksaibati
2021 ◽  
Author(s):  
Richard Rios ◽  
Elkin A. Noguera-Urbano ◽  
Jairo Espinosa ◽  
Jose Manuael Ochoa

Bioclimatic classifications seek to divide a study region into geographic areas with similar bioclimatic characteristics. In this study we proposed two bioclimatic classifications for Colombia using machine learning techniques. We firstly characterized the precipitation space of Colombia using principal component analysis. Based on Lang classification, we then projected all background sites in the precipitation space with their corresponding categories. We sequentially fit logistic regression models to re-classify all background sites in the precipitation space with six redefined Lang categories. New categories were the used to define a new modified Lang and Caldas-Lang classifications.


Author(s):  
M. Carr ◽  
V. Ravi ◽  
G. Sridharan Reddy ◽  
D. Veranna

This paper profiles mobile banking users using machine learning techniques viz. Decision Tree, Logistic Regression, Multilayer Perceptron, and SVM to test a research model with fourteen independent variables and a dependent variable (adoption). A survey was conducted and the results were analysed using these techniques. Using Decision Trees the profile of the mobile banking adopter’s profile was identified. Comparing different machine learning techniques it was found that Decision Trees outperformed the Logistic Regression and Multilayer Perceptron and SVM. Out of all the techniques, Decision Tree is recommended for profiling studies because apart from obtaining high accurate results, it also yields ‘if–then’ classification rules. The classification rules provided here can be used to target potential customers to adopt mobile banking by offering them appropriate incentives.


2021 ◽  
Author(s):  
Alan Lopes de Sousa Freitas ◽  
Ana Silvia Degasperi Ieker ◽  
Josiane Melchiori Pinheiro ◽  
Wilson Rinaldi ◽  
Heloise Manica Paris Teixeira

Cardiometabolic diseases, developed throughout the worker’s life,such as hypertension, diabetes, dyslipidemia and obesity are amongthe main causes of death and are associated with modifiable andcontrollable risk factors. The general objective of this study wasto apply supervised Machine Learning techniques and to comparetheir performance to predict the risk of developing cardiometabolicdisease from servers working at the School Hospital of south inBrazil. We sought to map the characteristics of individuals who aremore likely to develop cardiometabolic diseases. The machine learningmodels evaluated were Naive Bayes, Decision Tree, RandomForest, KNN, Logistic Regression and SVM. The results obtained inthe experiments showed that some supervised machine learningmodels produce a good classification, depending on the attributesand hyperparameters used.


2021 ◽  
Vol 42 (Supplement_1) ◽  
pp. S33-S34
Author(s):  
Morgan A Taylor ◽  
Randy D Kearns ◽  
Jeffrey E Carter ◽  
Mark H Ebell ◽  
Curt A Harris

Abstract Introduction A nuclear disaster would generate an unprecedented volume of thermal burn patients from the explosion and subsequent mass fires (Figure 1). Prediction models characterizing outcomes for these patients may better equip healthcare providers and other responders to manage large scale nuclear events. Logistic regression models have traditionally been employed to develop prediction scores for mortality of all burn patients. However, other healthcare disciplines have increasingly transitioned to machine learning (ML) models, which are automatically generated and continually improved, potentially increasing predictive accuracy. Preliminary research suggests ML models can predict burn patient mortality more accurately than commonly used prediction scores. The purpose of this study is to examine the efficacy of various ML methods in assessing thermal burn patient mortality and length of stay in burn centers. Methods This retrospective study identified patients with fire/flame burn etiologies in the National Burn Repository between the years 2009 – 2018. Patients were randomly partitioned into a 67%/33% split for training and validation. A random forest model (RF) and an artificial neural network (ANN) were then constructed for each outcome, mortality and length of stay. These models were then compared to logistic regression models and previously developed prediction tools with similar outcomes using a combination of classification and regression metrics. Results During the study period, 82,404 burn patients with a thermal etiology were identified in the analysis. The ANN models will likely tend to overfit the data, which can be resolved by ending the model training early or adding additional regularization parameters. Further exploration of the advantages and limitations of these models is forthcoming as metric analyses become available. Conclusions In this proof-of-concept study, we anticipate that at least one ML model will predict the targeted outcomes of thermal burn patient mortality and length of stay as judged by the fidelity with which it matches the logistic regression analysis. These advancements can then help disaster preparedness programs consider resource limitations during catastrophic incidents resulting in burn injuries.


2021 ◽  
Author(s):  
Rohit Rayala ◽  
Sashank Pasumarthi ◽  
Rohith Kuppa ◽  
S R KARTHIK

Paper is based on a model that is built to detect malicious URLs using machine learning techniques.


2019 ◽  
Author(s):  
Cheng-Sheng Yu ◽  
Yu-Jiun Lin ◽  
Chang-Hsien Lin ◽  
Sen-Te Wang ◽  
Shiyng-Yu Lin ◽  
...  

BACKGROUND Metabolic syndrome is a cluster of disorders that significantly influence the development and deterioration of numerous diseases. FibroScan is an ultrasound device that was recently shown to predict metabolic syndrome with moderate accuracy. However, previous research regarding prediction of metabolic syndrome in subjects examined with FibroScan has been mainly based on conventional statistical models. Alternatively, machine learning, whereby a computer algorithm learns from prior experience, has better predictive performance over conventional statistical modeling. OBJECTIVE We aimed to evaluate the accuracy of different decision tree machine learning algorithms to predict the state of metabolic syndrome in self-paid health examination subjects who were examined with FibroScan. METHODS Multivariate logistic regression was conducted for every known risk factor of metabolic syndrome. Principal components analysis was used to visualize the distribution of metabolic syndrome patients. We further applied various statistical machine learning techniques to visualize and investigate the pattern and relationship between metabolic syndrome and several risk variables. RESULTS Obesity, serum glutamic-oxalocetic transaminase, serum glutamic pyruvic transaminase, controlled attenuation parameter score, and glycated hemoglobin emerged as significant risk factors in multivariate logistic regression. The area under the receiver operating characteristic curve values for classification and regression trees and for the random forest were 0.831 and 0.904, respectively. CONCLUSIONS Machine learning technology facilitates the identification of metabolic syndrome in self-paid health examination subjects with high accuracy.


Sign in / Sign up

Export Citation Format

Share Document