45 Application of Machine Learning Models to Thermal Burn Patient Outcome Predictions in the Aftermath of a Nuclear Event

2021 ◽  
Vol 42 (Supplement_1) ◽  
pp. S33-S34
Author(s):  
Morgan A Taylor ◽  
Randy D Kearns ◽  
Jeffrey E Carter ◽  
Mark H Ebell ◽  
Curt A Harris

Abstract Introduction A nuclear disaster would generate an unprecedented volume of thermal burn patients from the explosion and subsequent mass fires (Figure 1). Prediction models characterizing outcomes for these patients may better equip healthcare providers and other responders to manage large scale nuclear events. Logistic regression models have traditionally been employed to develop prediction scores for mortality of all burn patients. However, other healthcare disciplines have increasingly transitioned to machine learning (ML) models, which are automatically generated and continually improved, potentially increasing predictive accuracy. Preliminary research suggests ML models can predict burn patient mortality more accurately than commonly used prediction scores. The purpose of this study is to examine the efficacy of various ML methods in assessing thermal burn patient mortality and length of stay in burn centers. Methods This retrospective study identified patients with fire/flame burn etiologies in the National Burn Repository between the years 2009 – 2018. Patients were randomly partitioned into a 67%/33% split for training and validation. A random forest model (RF) and an artificial neural network (ANN) were then constructed for each outcome, mortality and length of stay. These models were then compared to logistic regression models and previously developed prediction tools with similar outcomes using a combination of classification and regression metrics. Results During the study period, 82,404 burn patients with a thermal etiology were identified in the analysis. The ANN models will likely tend to overfit the data, which can be resolved by ending the model training early or adding additional regularization parameters. Further exploration of the advantages and limitations of these models is forthcoming as metric analyses become available. Conclusions In this proof-of-concept study, we anticipate that at least one ML model will predict the targeted outcomes of thermal burn patient mortality and length of stay as judged by the fidelity with which it matches the logistic regression analysis. These advancements can then help disaster preparedness programs consider resource limitations during catastrophic incidents resulting in burn injuries.

Open Heart ◽  
2020 ◽  
Vol 7 (1) ◽  
pp. e001297
Author(s):  
Nicklas Vinter ◽  
Anne Sofie Frederiksen ◽  
Andi Eie Albertsen ◽  
Gregory Y H Lip ◽  
Morten Fenger-Grøn ◽  
...  

ObjectiveElectrical cardioversion is frequently performed to restore sinus rhythm in patients with persistent atrial fibrillation (AF). However, AF recurs in many patients and identifying the patients who benefit from electrical cardioversion is difficult. The objective was to develop sex-specific prediction models for successful electrical cardioversion and assess the potential of machine learning methods in comparison with traditional logistic regression.MethodsIn a retrospective cohort study, we examined several candidate predictors, including comorbidities, biochemistry, echocardiographic data, and medication. The outcome was successful cardioversion, defined as normal sinus rhythm immediately after the electrical cardioversion and no documented recurrence of AF within 3 months after. We used random forest and logistic regression models for sex-specific prediction.ResultsThe cohort comprised 332 female and 790 male patients with persistent AF who underwent electrical cardioversion. Cardioversion was successful in 44.9% of the women and 49.9% of the men. The prediction errors of the models were high for both women (41.0% for machine learning and 48.8% for logistic regression) and men (46.0% for machine learning and 44.8% for logistic regression). Discrimination was modest for both machine learning (0.59 for women and 0.56 for men) and logistic regression models (0.60 for women and 0.59 for men), although the models were well calibrated.ConclusionsSex-specific machine learning and logistic regression models showed modest predictive performance for successful electrical cardioversion. Identifying patients who will benefit from cardioversion remains challenging in clinical practice. The high recurrence rate calls for thoroughly informed shared decision-making for electrical cardioversion.


2021 ◽  
Author(s):  
Bamba Gaye ◽  
Maxime Vignac ◽  
Jesper R. Gådin ◽  
Magalie Ladouceur ◽  
Kenneth Caidahl ◽  
...  

Abstract Objective: We aimed to develop clinical classifiers to identify prevalent ascending aortic dilatation in patients with BAV and tricuspid aortic valve (TAV). Methods: This study included BAV (n=543) and TAV (n=491) patients with aortic valve disease and/or ascending aortic dilatation but devoid of coronary artery disease undergoing cardiothoracic surgery. We applied machine learning algorithms and classic logistic regression models, using multiple variable selection methodologies to identify predictors of high risk of ascending aortic dilatation (ascending aorta with a diameter above 40 mm). Analyses included comprehensive multidimensional data (i.e., valve morphology, clinical data, family history of cardiovascular diseases, prevalent diseases, demographic, lifestyle and medication). Results: BAV patients were younger (60.4±12.4 years) than TAV patients (70.4±9.1 years), and had a higher frequency of aortic dilatation (45.3% vs. 28.9% for BAV and TAV, respectively. P<0.001). The aneurysm prediction models showed mean AUC values above 0.8 for TAV patients, with the absence of aortic stenosis being the main predictor, followed by diabetes and high sensitivity C-Reactive Protein. Using the same clinical measures in BAV patients our prediction model resulted in AUC values between 0.5-0.55, not useful for prediction of aortic dilatation. The classification results were consistent for all machine learning algorithms and classic logistic regression models. Conclusions: Cardiovascular risk profiles appear to be more predictive of aortopathy in TAV patients than in patients with BAV. This adds evidence to the fact that BAV- and TAV-associated aortopathy involve different pathways to aneurysm formation and highlights the need for specific aneurysm preventions in these patients. Further, our results highlight that machine learning approaches do not outperform classical prediction methods in addressing complex interactions and non-linear relations between variables.


Thorax ◽  
2019 ◽  
Vol 74 (11) ◽  
pp. 1063-1069 ◽  
Author(s):  
Mary B Rice ◽  
Wenyuan Li ◽  
Joel Schwartz ◽  
Qian Di ◽  
Itai Kloog ◽  
...  

BackgroundAmbient air pollution accelerates lung function decline among adults, however, there are limited data about its role in the development and progression of early stages of interstitial lung disease.AimsTo evaluate associations of long-term exposure to traffic and ambient pollutants with odds of interstitial lung abnormalities (ILA) and progression of ILA on repeated imaging.MethodsWe ascertained ILA on chest CT obtained from 2618 Framingham participants from 2008 to 2011. Among 1846 participants who also completed a cardiac CT from 2002 to 2005, we determined interval ILA progression. We assigned distance from home address to major roadway, and the 5-year average of fine particulate matter (PM2.5), elemental carbon (EC, a traffic-related PM2.5 constituent) and ozone using spatio-temporal prediction models. Logistic regression models were adjusted for age, sex, body mass index, smoking status, packyears of smoking, household tobacco exposure, neighbourhood household value, primary occupation, cohort and date.ResultsAmong 2618 participants with a chest CT, 176 (6.7%) had ILA, 1361 (52.0%) had no ILA, and the remainder were indeterminate. Among 1846 with a preceding cardiac CT, 118 (6.4%) had ILA with interval progression. In adjusted logistic regression models, an IQR difference in 5-year EC exposure of 0.14 µg/m3 was associated with a 1.27 (95% CI 1.04 to 1.55) times greater odds of ILA, and a 1.33 (95% CI 1.00 to 1.76) times greater odds of ILA progression. PM2.5 and O3 were not associated with ILA or ILA progression.ConclusionsExposure to EC may increase risk of progressive ILA, however, associations with other measures of ambient pollution were inconclusive.


2020 ◽  
Author(s):  
Pål Vegard Johnsen ◽  
Signe Riemer-Sørensen ◽  
Andrew Thomas DeWan ◽  
Megan E. Cahill ◽  
Mette Langaas

AbstractBackgroundThe identification of gene-gene and gene-environment interactions in genome-wide association studies is challenging due to the unknown nature of the interactions and the overwhelmingly large number of possible combinations. Classical logistic regression models are suitable to look for pre-defined interactions while more complex models, such as tree ensemble models, with the ability to detect any interactions have previously been difficult to interpret. However, with the development of methods for model explainability, it is now possible to interpret tree ensemble models with a strong theoretical ground and efficiently.ResultsWe propose a tree ensemble- and SHAP-based method for identifying as well as interpreting both gene-gene and gene-environment interactions on large-scale biobank data. A set of independent cross-validation runs are used to implicitly investigate the whole genome. We apply and evaluate the method using data from the UK Biobank with obesity as the phenotype. The results are in line with previous research on obesity as we identify top SNPs previously associated with obesity. We further demonstrate how to interpret and visualize interactions. The analysis suggests that the new method finds interactions between features that logistic regression models have difficulties in detecting.ConclusionsThe new method robustly detects interesting interactions, and can be applied to large-scale biobanks with high-dimensional data.


2021 ◽  
Vol 9 (1) ◽  
Author(s):  
Gulsah Gurkan ◽  
Yoav Benjamini ◽  
Henry Braun

AbstractEmploying nested sequences of models is a common practice when exploring the extent to which one set of variables mediates the impact of another set. Such an analysis in the context of logistic regression models confronts two challenges: (i) direct comparisons of coefficients across models are generally biased due to the changes in scale that accompany the changes in the set of explanatory variables, (ii) conducting a large number of tests induces a problem of multiplicity that can lead to spurious findings of significance if not heeded. This article aims to illustrate a practical strategy for conducting analyses in the face of these challenges. The challenges—and how to address them—are illustrated using a subset of the findings reported by Braun (Large-scale Assess Educ 6(4):1–52, 2018. 10.1186/s40536-018-0058-x), drawn from the Programme for the International Assessment of Adult Competencies (PIAAC), an international, large-scale assessment of adults. For each country in the dataset, a nested pair of logistic regression models was fit in order to investigate the role of Educational Attainment and Cognitive Skills in mediating the impact of family background and demographic characteristics on the location of an individual’s annual income in the national income distribution. A modified version of the Karlson–Holm–Breen (KHB) method was employed to obtain an unbiased estimate of the true differences in the coefficients between nested logistic models. In order to address the issue of multiplicity, a recent generalization of the Benjamini–Hochberg (BH) False Discovery Rate (FDR)-controlling procedure to hierarchically structured hypotheses was employed and compared to two conventional methods. The differences between the changes in coefficients calculated conventionally and with the KHB adjustment varied from negligible to very substantial. When combined with the actual magnitudes of the coefficients, we concluded that the more proximal factors indeed act as strong mediators for the background factors, but less so for Age, and hardly at all for Gender. With respect to multiplicity, applying the FDR-controlling procedure yielded results very similar to those obtained by applying a standard per-comparison procedure, but quite a few more discoveries in comparison to the Bonferroni procedure. The KHB methodology illustrated here can be applied wherever there is interest in comparing nested logistic regressions. Modifications to account for probability sampling are practicable. The categorization of variables and the order of entry should be determined by substantive considerations. On the other hand, the BH procedure is perfectly general and can be implemented to address multiplicity issues in a broad range of settings.


10.2196/15601 ◽  
2019 ◽  
Vol 7 (4) ◽  
pp. e15601 ◽  
Author(s):  
Quazi Abidur Rahman ◽  
Tahir Janmohamed ◽  
Hance Clarke ◽  
Paul Ritvo ◽  
Jane Heffernan ◽  
...  

Background Pain volatility is an important factor in chronic pain experience and adaptation. Previously, we employed machine-learning methods to define and predict pain volatility levels from users of the Manage My Pain app. Reducing the number of features is important to help increase interpretability of such prediction models. Prediction results also need to be consolidated from multiple random subsamples to address the class imbalance issue. Objective This study aimed to: (1) increase the interpretability of previously developed pain volatility models by identifying the most important features that distinguish high from low volatility users; and (2) consolidate prediction results from models derived from multiple random subsamples while addressing the class imbalance issue. Methods A total of 132 features were extracted from the first month of app use to develop machine learning–based models for predicting pain volatility at the sixth month of app use. Three feature selection methods were applied to identify features that were significantly better predictors than other members of the large features set used for developing the prediction models: (1) Gini impurity criterion; (2) information gain criterion; and (3) Boruta. We then combined the three groups of important features determined by these algorithms to produce the final list of important features. Three machine learning methods were then employed to conduct prediction experiments using the selected important features: (1) logistic regression with ridge estimators; (2) logistic regression with least absolute shrinkage and selection operator; and (3) random forests. Multiple random under-sampling of the majority class was conducted to address class imbalance in the dataset. Subsequently, a majority voting approach was employed to consolidate prediction results from these multiple subsamples. The total number of users included in this study was 879, with a total number of 391,255 pain records. Results A threshold of 1.6 was established using clustering methods to differentiate between 2 classes: low volatility (n=694) and high volatility (n=185). The overall prediction accuracy is approximately 70% for both random forests and logistic regression models when using 132 features. Overall, 9 important features were identified using 3 feature selection methods. Of these 9 features, 2 are from the app use category and the other 7 are related to pain statistics. After consolidating models that were developed using random subsamples by majority voting, logistic regression models performed equally well using 132 or 9 features. Random forests performed better than logistic regression methods in predicting the high volatility class. The consolidated accuracy of random forests does not drop significantly (601/879; 68.4% vs 618/879; 70.3%) when only 9 important features are included in the prediction model. Conclusions We employed feature selection methods to identify important features in predicting future pain volatility. To address class imbalance, we consolidated models that were developed using multiple random subsamples by majority voting. Reducing the number of features did not result in a significant decrease in the consolidated prediction accuracy.


Author(s):  
Hui Li ◽  
Juyang Jiao ◽  
Shutao Zhang ◽  
Haozheng Tang ◽  
Xinhua Qu ◽  
...  

AbstractThe purpose of this study was to develop a predictive model for length of stay (LOS) after total knee arthroplasty (TKA). Between 2013 and 2014, 1,826 patients who underwent TKA from a single Singapore center were enrolled in the study after qualification. Demographics of patients with normal and prolonged LOS were analyzed. The risk variables that could affect LOS were identified by univariate analysis. Predictive models for LOS after TKA by logistic regression or machine learning were constructed and compared. The univariate analysis showed that age, American Society of Anesthesiologist level, diabetes, ischemic heart disease, congestive heart failure, general anesthesia, and operation duration were risk factors that could affect LOS (p < 0.05). Comparing with logistic regression models, the machine learning model with all variables was the best model to predict LOS after TKA, of whose area of operator characteristic curve was 0.738. Machine learning algorithms improved the predictive performance of LOS prediction models for TKA patients.


2020 ◽  
Vol 42 (3) ◽  
pp. 135-147 ◽  
Author(s):  
Michael Behr ◽  
Saba Saiel ◽  
Valerie Evans ◽  
Dinesh Kumbhare

Fibromyalgia (FM) diagnosis remains a challenge for clinicians due to a lack of objective diagnostic tools. One proposed solution is the use of quantitative ultrasound (US) techniques, such as image texture analysis, which has demonstrated discriminatory capabilities with other chronic pain conditions. From this, we propose the use of image texture variables to construct and compare two machine learning models (support vector machine [SVM] and logistic regression) for differentiating between the trapezius muscle in healthy and FM patients. US videos of the right and left trapezius muscle were acquired from healthy ( n = 51) participants and those with FM ( n = 57). The videos were converted into 64,800 skeletal muscle regions of interest (ROIs) using MATLAB. The ROIs were filtered by an algorithm using the complex wavelet structural similarity index (CW-SSIM), which removed ROIs that were similar. Thirty-one texture variables were extracted from the ROIs, which were then used in nested cross-validation to construct SVM and elastic net regularized logistic regression models. The generalized performance accuracy of both models was estimated and confirmed with a final validation on a holdout test set. The predicted generalized performance accuracy of the SVM and logistic regression models was computed to be 83.9 ± 2.6% and 65.8 ± 1.7%, respectively. The models achieved accuracies of 84.1%, and 66.0% on the final holdout test set, validating performance estimates. Although both machine learning models differentiate between healthy trapezius muscle and that of patients with FM, only the SVM model demonstrated clinically relevant performance levels.


2021 ◽  
Author(s):  
Richard Rios ◽  
Elkin A. Noguera-Urbano ◽  
Jairo Espinosa ◽  
Jose Manuael Ochoa

Bioclimatic classifications seek to divide a study region into geographic areas with similar bioclimatic characteristics. In this study we proposed two bioclimatic classifications for Colombia using machine learning techniques. We firstly characterized the precipitation space of Colombia using principal component analysis. Based on Lang classification, we then projected all background sites in the precipitation space with their corresponding categories. We sequentially fit logistic regression models to re-classify all background sites in the precipitation space with six redefined Lang categories. New categories were the used to define a new modified Lang and Caldas-Lang classifications.


Sign in / Sign up

Export Citation Format

Share Document