scholarly journals Immune checkpoint PD-1/PD-L1 CTLA-4/CD80 are blocked by Rhus verniciflua stokes and its active compounds

2020 ◽  
Vol 9 ◽  
pp. 100579
Author(s):  
Tae In Kim ◽  
Wei Li ◽  
Ji Hye Kim ◽  
Hwan-Suck Chung
Molecules ◽  
2019 ◽  
Vol 24 (22) ◽  
pp. 4062 ◽  
Author(s):  
Wei Li ◽  
Tae In Kim ◽  
Ji Hye Kim ◽  
Hwan-Suck Chung

The bark of Rhus verniciflua Stokes (RVS) has been used to treat cancer in Korean herbal medicine. When we screened for PD-1 and CTLA-4 immune checkpoint inhibitors (PD-1/PD-L1 CTLA-4/CD80) from around 800 herbal extracts using competitive Enzyme-Linked Immunosorbent Assay (ELISA), we found that RVS blocked both the PD-1/PD-L1 and the CTLA-4/CD80 interactions. To identify the active compounds from RVS, we performed bioactivity-guided fractionation, and the ethyl acetate (EtOAc) fraction of RVS proved to be the most effective at blocking the PD-1/PD-L1 and CTLA-4/CD80 interactions. In addition, we isolated and identified 20 major compounds in the EtOAc fraction of RVS and then examined the blocking effects of these 20 compounds on PD-1/PD-L1 and CTLA-4/CD80. Among them, four compounds [eriodictyol (7) > fisetin (9) > quercetin (18) > liquiritigenin (13)] blocked the interaction of PD-1/PD-L1 on competitive ELISA. In addition, four different compounds [protocatechuic acid (2) > caffeic acid (19) > taxifolin (5) > butin (6)] blocked the interaction of CTLA-4/CD80. Our findings suggest that RVS and its components could be used as a potential immune checkpoint inhibitor blockade and could be developed for immuno-oncological therapeutics.


2018 ◽  
Vol 73 (11-12) ◽  
pp. 457-463
Author(s):  
Jinfeng Yang ◽  
Yong Soo Kwon ◽  
Myong Jo Kim

Abstract The Rhus verniciflua Stokes (RVS) extract is used as a traditional herbal medicine in Southeast Asian countries such as Korea and China. In the present study, one phenolic acid and six flavonoids were isolated from an 80% ethanol RVS extract to examine their antimicrobial activities. These compounds were identified as 3′,4′,7-trihydroxyflavone (1), methyl gallate (2), gallic acid (3), fusti (4), fisetin (5), butin (6), and sulfuretin (7) by matrix-assisted laser desorption/ionization time-of-flight mass spectrometry and nuclear magnetic resonance spectroscopy. The antimicrobial activities of compounds 5 and 6 (at a dose of 16 μg/mL each) were superior to that of the control, cycloheximide (at a dose of 25 μg/mL), against Hypocrea nigricans; additionally, the activities of compounds 1 and 2 (at a dose of 8 μg/mL each) were superior to the control against Penicillium oxalicum. Also, chemical compounds 1 and 5 (at a dose of 16 μg/mL each) had higher activities than the control (25 μg/mL) against Trichoderma virens. Chemical compound 1 (at a dose of 8 μg/mL) had a similar activity to that of the control against Bacillus subtilis. The obtained results suggest that the RVS extract could be a promising food and nutraceutical source because of the antimicrobial properties of its phenolic compounds.


2017 ◽  
Vol 27 (6) ◽  
pp. 1090-1097 ◽  
Author(s):  
Tae Gyu Nam ◽  
Bong Han Lee ◽  
Hyo-Kyoung Choi ◽  
Ahmad Rois Mansur ◽  
Sang Gil Lee ◽  
...  

2019 ◽  
Vol 2019 ◽  
pp. 1-9 ◽  
Author(s):  
Min Sung Kim ◽  
Chul Won Lee ◽  
Jung-Hoon Kim ◽  
Jang-Cheon Lee ◽  
Won Gun An

Rhus verniciflua Stokes has long been used as a food supplement and traditional herbal medicine for various ailments in East Asia. We evaluated the anticancer effects of Rhus verniciflua Stokes extract (RVSE) on MCF-7 cells by 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide assay, flow cytometry, annexin V/7-AAD staining, and western blotting. In addition, the gallic acid content of RVSE was assayed using high-performance liquid chromatography. RVSE inhibited the growth of MCF-7 cells in a dose-dependent manner by inducing apoptosis in the sub-G1 phase. RVSE also significantly increased the number of apoptotic cells and increased the expression of p53 and p21 in a dose-dependent manner. Furthermore, RVSE treatment increased the Bax:Bcl-2 ratio and the levels of apoptosis-related factors, such as cleaved caspase-3 and -9 and PARP, in MCF-7 cells. Our findings suggest that the proapoptotic effect of RVSE on MCF-7 cells is mediated by p53, p21, and the intrinsic mitochondrial cascade. Thus, RVSE shows promise for the prevention and treatment of breast cancer.


Sign in / Sign up

Export Citation Format

Share Document