scholarly journals Corrigendum to “Intra-nasal administration of sperm head turns neutrophil into reparative mode after PGE1- and/or Ang II receptor-mediated phagocytosis followed by expression of sperm head’s coding RNA” [Int. Immunopharmacol. 2021 (98) 107696]

2021 ◽  
pp. 108458
Author(s):  
Nafiseh Pakravan ◽  
Zuhair Mohammad Hassan ◽  
Ardeshir Abbasi
Author(s):  
D.P. Bazett-Jones ◽  
F.P. Ottensmeyer

Dark field electron microscopy has been used for the study of the structure of individual macromolecules with a resolution to at least the 5Å level. The use of this technique has been extended to the investigation of structure of interacting molecules, particularly the interaction between DNA and fish protamine, a class of basic nuclear proteins of molecular weight 4,000 daltons.Protamine, which is synthesized during spermatogenesis, binds to chromatin, displaces the somatic histones and wraps up the DNA to fit into the small volume of the sperm head. It has been proposed that protamine, existing as an extended polypeptide, winds around the minor groove of the DNA double helix, with protamine's positively-charged arginines lining up with the negatively-charged phosphates of DNA. However, viewing protamine as an extended protein is inconsistent with the results obtained in our laboratory.


2020 ◽  
Vol 134 (19) ◽  
pp. 2581-2595
Author(s):  
Qiuhong Li ◽  
Maria B. Grant ◽  
Elaine M. Richards ◽  
Mohan K. Raizada

Abstract The angiotensin-converting enzyme 2 (ACE2) has emerged as a critical regulator of the renin–angiotensin system (RAS), which plays important roles in cardiovascular homeostasis by regulating vascular tone, fluid and electrolyte balance. ACE2 functions as a carboxymonopeptidase hydrolyzing the cleavage of a single C-terminal residue from Angiotensin-II (Ang-II), the key peptide hormone of RAS, to form Angiotensin-(1-7) (Ang-(1-7)), which binds to the G-protein–coupled Mas receptor and activates signaling pathways that counteract the pathways activated by Ang-II. ACE2 is expressed in a variety of tissues and overwhelming evidence substantiates the beneficial effects of enhancing ACE2/Ang-(1-7)/Mas axis under many pathological conditions in these tissues in experimental models. This review will provide a succinct overview on current strategies to enhance ACE2 as therapeutic agent, and discuss limitations and future challenges. ACE2 also has other functions, such as acting as a co-factor for amino acid transport and being exploited by the severe acute respiratory syndrome coronaviruses (SARS-CoVs) as cellular entry receptor, the implications of these functions in development of ACE2-based therapeutics will also be discussed.


1999 ◽  
Vol 82 (11) ◽  
pp. 1497-1503 ◽  
Author(s):  
Hajime Tsuji ◽  
Hiromi Nishimura ◽  
Haruchika Masuda ◽  
Yasushi Kunieda ◽  
Hidehiko Kawano ◽  
...  

SummaryIn the present study, we demonstrate that brain natriuretic peptide (BNP) and C-type natriuretic peptide (CNP) interact with angiotensin II (Ang II) in regulative blood coagulation and fibrinolysis by suppressing the expressions of both tissue factor (TF) and plasminogen activator inhibitor-1 (PAI-1) induced by Ang II. The expressions of TF and PAI-1 mRNA were analyzed by northern blotting methods, and the activities of TF on the surface of rat aortic endothelial cells (RAECs) and PAI-1 in the culture media were respectively measured by chromogenic assay.Both BNP and CNP suppressed the expressions of TF and PAI-1 mRNA induced by Ang II in a time- and concentration-dependent manner via cGMP cascade, which suppressions were accompanied by respective decrease in activities of TF and PAI-1. However, neither the expression of tissue factor pathway inhibitor (TFPI) nor tissue-type plasminogen activator (TPA) mRNA was affected by the treatment of BNP and CNP.


2020 ◽  
Vol 24 (5) ◽  
pp. 226-228
Author(s):  
Ede Kékes
Keyword(s):  

Az ACE-2–Ang-(1–7)–Mas-tengely szervezetünkben az ACE/ Ang-II–AT1R-tengelyt ellensúlyozza annak érdekében, hogy a normális homeosztázis fennmaradjon. A Covid-19-pandémia során ez a védekezőrendszer újra előtérbe került, és tisztázódnak a cardiovascularis-metabolikus rendszerre gyakorolt kedvező hatásai, amelyek között az antihipertenzív hatás is jelentős. Rövid összefoglalónkban ezen kutatások lényeges szempontjait elemezzük.


Reproduction ◽  
2000 ◽  
pp. 143-150 ◽  
Author(s):  
JM Bedford ◽  
OB Mock ◽  
SK Nagdas ◽  
VP Winfrey ◽  
GE Olson

To obtain further perspective on reproduction and particularly gamete function among so-called primitive mammals presently grouped in the Order Insectivora, we have examined the African hedgehog, Atelerix albiventris, in light of unusual features reported in shrews and moles. Atelerix proves to share many but not all of the characteristics seen in these other insectivores. The penis of Atelerix has a 'snail-like' form, but lacks the surface spines common in insectivores and a number of other mammals. Hedgehog spermatozoa display an eccentric insertion of the tail on the sperm head, and they manifest the barbs on the perforatorium that, in shrews, probably effect the initial binding of the sperm head to the zona pellucida. As a possible correlate, the structural matrix of the hedgehog acrosome comprises only two main components, as judged by immunoblotting, rather than the complex of peptides seen in the matrix of some higher mammals. The Fallopian tube of Atelerix is relatively simple; it displays only minor differences in width and in the arborized epithelium between the isthmus and ampulla, and shows no evidence of the unusual sperm crypts that characterize the isthmus or ampulla, depending on the species, in shrews and moles. In common with other insectivores, Atelerix appears to be an induced ovulator, as judged by the ovulation of some 6-8 eggs by about 23 h after injection of hCG. The dense cumulus oophorus appeared to have little matrix, in keeping with the modest dimensions of the tubal ampulla and, while it was not quite as discrete as that of soricids, it did show the same insensitivity to 0.5% (w/v) ovine or bovine hyaluronidase.


2018 ◽  
Vol 25 (28) ◽  
pp. 3333-3352 ◽  
Author(s):  
Natalia Pessoa Rocha ◽  
Ana Cristina Simoes e Silva ◽  
Thiago Ruiz Rodrigues Prestes ◽  
Victor Feracin ◽  
Caroline Amaral Machado ◽  
...  

Background: The Renin-Angiotensin System (RAS) is a key regulator of cardiovascular and renal homeostasis, but also plays important roles in mediating physiological functions in the central nervous system (CNS). The effects of the RAS were classically described as mediated by angiotensin (Ang) II via angiotensin type 1 (AT1) receptors. However, another arm of the RAS formed by the angiotensin converting enzyme 2 (ACE2), Ang-(1-7) and the Mas receptor has been a matter of investigation due to its important physiological roles, usually counterbalancing the classical effects exerted by Ang II. Objective: We aim to provide an overview of effects elicited by the RAS, especially Ang-(1-7), in the brain. We also aim to discuss the therapeutic potential for neuropsychiatric disorders for the modulation of RAS. Method: We carried out an extensive literature search in PubMed central. Results: Within the brain, Ang-(1-7) contributes to the regulation of blood pressure by acting at regions that control cardiovascular functions. In contrast with Ang II, Ang-(1-7) improves baroreflex sensitivity and plays an inhibitory role in hypothalamic noradrenergic neurotransmission. Ang-(1-7) not only exerts effects related to blood pressure regulation, but also acts as a neuroprotective component of the RAS, for instance, by reducing cerebral infarct size, inflammation, oxidative stress and neuronal apoptosis. Conclusion: Pre-clinical evidence supports a relevant role for ACE2/Ang-(1-7)/Mas receptor axis in several neuropsychiatric conditions, including stress-related and mood disorders, cerebrovascular ischemic and hemorrhagic lesions and neurodegenerative diseases. However, very few data are available regarding the ACE2/Ang-(1-7)/Mas receptor axis in human CNS.


2019 ◽  
Vol 9 (1) ◽  
Author(s):  
Yongjun Zhu ◽  
Hongwang Cui ◽  
Jie Lv ◽  
Haiqin Liang ◽  
Yanping Zheng ◽  
...  

AbstractAbnormal renin-angiotensin system (RAS) activation plays a critical role in the initiation and progression of chronic kidney disease (CKD) by directly mediating renal tubular cell apoptosis. Our previous study showed that necroptosis may play a more important role than apoptosis in mediating renal tubular cell loss in chronic renal injury rats, but the mechanism involved remains unknown. Here, we investigate whether blocking the angiotensin II type 1 receptor (AT1R) and/or angiotensin II type 2 receptor (AT2R) beneficially alleviates renal tubular cell necroptosis and chronic kidney injury. In an angiotensin II (Ang II)-induced renal injury mouse model, we found that blocking AT1R and AT2R effectively mitigates Ang II-induced increases in necroptotic tubular epithelial cell percentages, necroptosis-related RIP3 and MLKL protein expression, serum creatinine and blood urea nitrogen levels, and tubular damage scores. Furthermore, inhibition of AT1R and AT2R diminishes Ang II-induced necroptosis in HK-2 cells and the AT2 agonist CGP42112A increases the percentage of necroptotic HK-2 cells. In addition, the current study also demonstrates that Losartan and PD123319 effectively mitigated the Ang II-induced increases in Fas and FasL signaling molecule expression. Importantly, disruption of FasL significantly suppressed Ang II-induced increases in necroptotic HK-2 cell percentages, and necroptosis-related proteins. These results suggest that Fas and FasL, as subsequent signaling molecules of AT1R and AT2R, might involve in Ang II-induced necroptosis. Taken together, our results suggest that Ang II-induced necroptosis of renal tubular cell might be involved both AT1R and AT2R and the subsequent expression of Fas, FasL signaling. Thus, AT1R and AT2R might function as critical mediators.


Sign in / Sign up

Export Citation Format

Share Document