scholarly journals Integrated soil, water and agronomic management effects on crop productivity and selected soil properties in Western Ethiopia

2018 ◽  
Vol 6 (4) ◽  
pp. 305-316 ◽  
Author(s):  
Teklu Erkossa ◽  
Timothy O. Williams ◽  
Fanuel Laekemariam
1989 ◽  
Vol 29 (1) ◽  
pp. 51 ◽  
Author(s):  
DC McKenzie ◽  
HB So

The effect of gypsum on the properties and crop productivity of 6 contrasting vertisols of the Gwydir Valley, New South Wales was investigated in 1978 and 1979. These soils are often used for dryland wheat production, although crop growth is generally restricted by their structural instability. In 2 of the soils used in our study, the surface aggregates were sodic and dispersive (poor soils), 2 were relatively stable when wetted (good soils), whilst the other 2 soils had surface aggregates that were intermediate in behaviour (intermediate soils). The effects of added gypsum at 4 rates (0, 2.5, 5.0 and 7.5 t ha-1) on soil water profiles, soil properties and the growth of wheat were monitored over a 2 year period. Dryland wheat grain yields were increased by as much as 230% following the application of gypsum. Benefits were most pronounced on clays with sodic topsoils, a high water-holding capacity and adequate nutrition; plant response to gypsum on nearby soils with non-dispersive surfaces was less pronounced. Yield increases were associated with better seedling establishment, greater tiller production, increased grain weight, and lower incidence of 'Crown Rot' disease. Plant response to gypsum was related to improved water penetration into the soil, allowing greater storage of water in the subsoil, rather than loss via evaporation and possibly runoff. Increases as high as 137% in the soil water storage to a depth of 1.2 m were observed. Crop performance was also strongly influenced by rainfall, time of sowing and weed control. Where nitrogen and, to a lesser extent, phosphorus, were deficient in gypsum-treated soil, they had to be added before the extra soil water could be utilised effectively by wheat. On the lighter textured clays, gypsum appeared to aggravate nitrogen deficiency, apparently because of enhanced leaching.


2011 ◽  
Vol 6 (No. 3) ◽  
pp. 131-146 ◽  
Author(s):  
R. Duffková ◽  
A. Zajíček ◽  
E. Nováková

  Physical properties of soils have a significant influence on their water regime and should be considered when selecting suitable agricultural crops for particular sites, taking into account the crop productivity and its water requirements. Mean daily rates of actual evapotranspiration (ETa) were obtained by collation of measured or otherwise estimated 10-min values for the years 2004, 2006 and 2009 for a partially tile-drained agricultural experimental catchment in the Bohemo-Moravian Highland (Czech Republic). ETa was measured using the Bowen ratio (β) and energy balance (BREB) method at four weather stations located on different soil types (Stagnosols, Cambisols) and terrain relief positions (defined with respect to the groundwater recharge and discharge zones) over different crops (cereals, oil rape and permanent grassland). A systematic influence of soil properties on the evapotranspiration rate was more pronounced during the periods of limited transpiration (soil drought, crop maturity), when the average daily ETa was significantly lower and the corresponding β significantly higher over coarser-textured soils (shallow Haplic Cambisols), namely (year–ETa (mm/day)/β): 2004 – 1.75/1.66; 2006 – 2.44/0.93; 2009 – 2.60/0.81), than over finer-textured soils (Stagnic Cambisols and Haplic Stagnosols), namely: 2004 – 2.92/0.97; 2006 – 3.06/0.44; 2009 – 3.42/0.39). When the transpiration was not limited by soil water deficit, it acted as an equalizing factor smoothing down evapotranspiration from heterogeneous soil areas, whereby the effect of the soil physical properties was masked. With regard to soil water regime and evapotranspiration, the tile-drained Stagnic Cambisol lands behaved similarly as non-drained Haplic Cambisols. The effects of land use and of the terrain relief position could not be tracked independently, because the permanent grassland was situated in the wetter and texturally heavier parts of the catchment and the positions of the recharge/discharge zone coincided with the positions of texturally lighter/heavier soils, respectively.


2014 ◽  
Vol 2014 ◽  
pp. 1-11 ◽  
Author(s):  
Glécio Machado Siqueira ◽  
Jorge Dafonte Dafonte ◽  
Montserrat Valcárcel Armesto ◽  
Ênio Farias França e Silva

The apparent soil electrical conductivity (ECa) was continuously recorded in three successive dates using electromagnetic induction in horizontal (ECa-H) and vertical (ECa-V) dipole modes at a 6 ha plot located in Northwestern Spain. One of the ECadata sets was used to devise an optimized sampling scheme consisting of 40 points. Soil was sampled at the 0.0–0.3 m depth, in these 40 points, and analyzed for sand, silt, and clay content; gravimetric water content; and electrical conductivity of saturated soil paste. Coefficients of correlation between ECaand gravimetric soil water content (0.685 for ECa-V and 0.649 for ECa-H) were higher than those between ECaand clay content (ranging from 0.197 to 0.495, when different ECarecording dates were taken into account). Ordinary and universal kriging have been used to assess the patterns of spatial variability of the ECadata sets recorded at successive dates and the analyzed soil properties. Ordinary and universal cokriging methods have improved the estimation of gravimetric soil water content using the data of ECaas secondary variable with respect to the use of ordinary kriging.


Agronomy ◽  
2018 ◽  
Vol 8 (11) ◽  
pp. 256 ◽  
Author(s):  
Patrick Nyambo ◽  
Thembalethu Taeni ◽  
Cornelius Chiduza ◽  
Tesfay Araya

Soil acidification is a serious challenge and a major cause of declining soil and crop productivity in the Eastern parts of South Africa (SA). An incubation experiment investigated effects of different maize residue biochar rates on selected soil properties and soil loss in acidic Hutton soils. Biochar amendment rates were 0%, 2.5%, 5%, 7.5%, and 10% (soil weight) laid as a completely randomized design. Soil sampling was done on a 20-day interval for 140 days to give a 5 × 7 factorial experiment. Rainfall simulation was conducted at 60, 100 and 140 days after incubation to quantify soil loss. Relative to the control biochar amendments significantly improved soil physicochemical properties. After 140 days, biochar increased soil pH by between 0.34 to 1.51 points, soil organic carbon (SOC) by 2.2% to 2.34%, and microbial activity (MBC) by 496 to 1615 mg kg−1 compared to control. Soil aggregation (MWD) changes varied from 0.58 mm to 0.70 mm for the duration of the trial. Soil loss significantly decreased by 27% to 70% under biochar amendment compared to control. This indicates that maize residue biochar application has the potential to improve the soil properties and reduce soil loss in the degraded acidic Hutton soil.


2021 ◽  
Author(s):  
Fabio Olivieri de Nobile ◽  
Alexander Calero Hurtado ◽  
Renato de Mello Prado ◽  
Henrique Antunes de Souza ◽  
Maria Gabriela Anunciação ◽  
...  

Abstract Purpose: This study evaluated nitrogen (N) mineralization dynamics in three soils after the addition of heat-treated urban waste amendments or urban waste compost (UWC). The effects of UWC and urea on soil properties and broccoli and lettuce production were compared. Methods: The first N mineralization experiment was conducted in a factorial arrangement (4 × 3), as a randomized complete block design (RCBD), with three replicates. Four UWC doses: 12.5, 25.0, 37.5, and 50.0 mg dm-3 were applied to three soils: sandy Ustoxic Quartzipsamment (QS), intermediate-texture red Ultisol (US), and clayey red Oxisol (OS), during eight incubation periods (0, 7, 14, 28, 42, 56, 70, and 84 days). In the second experiment, the effects of UWC and urea fertilizer on soil properties were compared. The growth of broccoli and lettuce plants was evaluated (experiments 3 and 4). The treatments (Experiments 2–4) followed a factorial arrangement (4 × 2; RCBD; three replicates), using OS soil. Four N doses (as for experiment 1) were combined with two N sources (UWC and urea). Results: The processed UWC application proportionally increased the N mineralization rate by 72% in QS, 54% in US, and 66% in OS. Furthermore, UWC application enhanced soil properties (pH and nutrient availability), compared with urea fertilizer, and improved N uptake, resulting in higher fresh biomass production in broccoli and lettuce plants (50.0 and 37.5 mg dm-3, respectively). Conclusions: Our findings suggest that heat-treated UWC is an economical, viable, and efficient fertilizer to improve soil properties and short-cycle vegetable crop productivity.


1930 ◽  
Vol 20 (4) ◽  
pp. 541-548 ◽  
Author(s):  
J. R. H. Coutts

1. It is shown that results for the loss in weight of a soil on oven heating can be obtained to a very satisfactory degree of accuracy when a Hearson electrically controlled oven is used.2. Results obtained by heating soils to temperatures ranging from 5° to 250° give smooth curves connecting loss in weight with rise in temperature; from which it is concluded that there is no sudden alteration in the structure of a soil when it is heated to 100°, and that the airdry moisture of a soil, as determined with sufficient accuracy by the usual methods, is a convenient empirical factor, but not a representation of any fundamental soil property.3. An examination is made of the factors contributing to the observed total loss in weight when the soil is heated, and an explanation offered of the contributions made by the different types of soil water and by the soil colloids. It is found that the conclusions drawn from this discussion confirm views developed earlier with regard to the behaviour of the water in the soil, and the absence of any sharp dividing line between the different classes into which the soil water is usually divided.


Author(s):  
Shaoyang Dong ◽  
Yuan Guo ◽  
Xiong (Bill) Yu

Hydraulic conductivity and soil-water retention are two critical soil properties describing the fluid flow in unsaturated soils. Existing experimental procedures tend to be time consuming and labor intensive. This paper describes a heuristic approach that combines a limited number of experimental measurements with a computational model with random finite element to significantly accelerate the process. A microstructure-based model is established to describe unsaturated soils with distribution of phases based on their respective volumetric contents. The model is converted into a finite element model, in which the intrinsic hydraulic properties of each phase (soil particle, water, and air) are applied based on the microscopic structures. The bulk hydraulic properties are then determined based on discharge rate using Darcy’s law. The intrinsic permeability of each phase of soil is first calibrated from soil measured under dry and saturated conditions, which is then used to predict the hydraulic conductivities at different extents of saturation. The results match the experimental data closely. Mualem’s equation is applied to fit the pore size parameter based on the hydraulic conductivity. From these, the soil-water characteristic curve is predicted from van Genuchten’s equation. The simulation results are compared with the experimental results from documented studies, and excellent agreements were observed. Overall, this study provides a new modeling-based approach to predict the hydraulic conductivity function and soil-water characteristic curve of unsaturated soils based on measurement at complete dry or completely saturated conditions. An efficient way to measure these critical unsaturated soil properties will be of benefit in introducing unsaturated soil mechanics into engineering practice.


2021 ◽  
pp. 165-193
Author(s):  
Rakesh Kumar ◽  
Kirti Saurabh ◽  
Janki Sharan Mishra ◽  
Surajit Mondal ◽  
Hansraj Hans ◽  
...  

2020 ◽  
Vol 12 (8) ◽  
pp. 1242 ◽  
Author(s):  
Sumanta Chatterjee ◽  
Jingyi Huang ◽  
Alfred E. Hartemink

Progress in sensor technologies has allowed real-time monitoring of soil water. It is a challenge to model soil water content based on remote sensing data. Here, we retrieved and modeled surface soil moisture (SSM) at the U.S. Climate Reference Network (USCRN) stations using Sentinel-1 backscatter data from 2016 to 2018 and ancillary data. Empirical machine learning models were established between soil water content measured at the USCRN stations with Sentinel-1 data from 2016 to 2017, the National Land Cover Dataset, terrain parameters, and Polaris soil data, and were evaluated in 2018 at the same USCRN stations. The Cubist model performed better than the multiple linear regression (MLR) and Random Forest (RF) model (R2 = 0.68 and RMSE = 0.06 m3 m-3 for validation). The Cubist model performed best in Shrub/Scrub, followed by Herbaceous and Cultivated Crops but poorly in Hay/Pasture. The success of SSM retrieval was mostly attributed to soil properties, followed by Sentinel-1 backscatter data, terrain parameters, and land cover. The approach shows the potential for retrieving SSM using Sentinel-1 data in a combination of high-resolution ancillary data across the conterminous United States (CONUS). Future work is required to improve the model performance by including more SSM network measurements, assimilating Sentinel-1 data with other microwave, optical and thermal remote sensing products. There is also a need to improve the spatial resolution and accuracy of land surface parameter products (e.g., soil properties and terrain parameters) at the regional and global scales.


Sign in / Sign up

Export Citation Format

Share Document