Short-term and noninvasive assessment of antiaging effects of retinol 0.3% and retinoic acid 0.025% using in vivo multiphoton microscopy

2014 ◽  
Vol 70 (5) ◽  
pp. AB27 ◽  
2021 ◽  
Author(s):  
Peter R. Corridon

AbstractThe aim of the present study was to determine whether decellularized rat kidney microvascular and extracellular matrix (ECM) integrity could be preserved under in vivo conditions directly after transplantation. Whole kidneys were harvested from the Sprague Dawley rat and were decellularized by perfusion with 0.5% sodium dodecyl sulfate (SDS) for 24 hours, followed by phosphate-buffered saline (PBS) for an additional 24 hours. Decellularized kidneys were then transplanted into recipients and vascular high-molecular-weight (150-kDa) FITC dextrans were infused via the jugular vein. Blood was then allowed to flow through the decellularized transplant. Intravital multiphoton microscopy confirmed the suitable confinement of the dextrans within vascular tracks and preservation of the decellularized architecture that was monitored in the shortterm post transplantation.New and NoteworthyThe study confirmed in vivo microvascular and ECM preservation in the short-term post transplantation.


1992 ◽  
Vol 99 (3) ◽  
pp. 283-288 ◽  
Author(s):  
Christopher E M Griffiths ◽  
Dean S Rosenthal ◽  
Ambati P Reddy ◽  
James T Elder ◽  
Anders. Astrom ◽  
...  

Biomolecules ◽  
2019 ◽  
Vol 9 (10) ◽  
pp. 536 ◽  
Author(s):  
Laura Bellutti ◽  
Emilie Abby ◽  
Sophie Tourpin ◽  
Sébastien Messiaen ◽  
Delphine Moison ◽  
...  

In female mammals, germ cells enter meiosis in the fetal ovaries, while in males, meiosis is prevented until postnatal development. Retinoic acid (RA) is considered the main inducer of meiotic entry, as it stimulates Stra8 which is required for the mitotic/meiotic switch. In fetal testes, the RA-degrading enzyme CYP26B1 prevents meiosis initiation. However, the role of endogenous RA in female meiosis entry has never been demonstrated in vivo. In this study, we demonstrate that some effects of RA in mouse fetal gonads are not recapitulated by the invalidation or up-regulation of CYP26B1. In organ culture of fetal testes, RA stimulates testosterone production and inhibits Sertoli cell proliferation. In the ovaries, short-term inhibition of RA-signaling does not decrease Stra8 expression. We develop a gain-of-function model to express CYP26A1 or CYP26B1. Only CYP26B1 fully prevents STRA8 induction in female germ cells, confirming its role as part of the meiotic prevention machinery. CYP26A1, a very potent RA degrading enzyme, does not impair the formation of STRA8-positive cells, but decreases Stra8 transcription. Collectively, our data reveal that CYP26B1 has other activities apart from metabolizing RA in fetal gonads and suggest a role of endogenous RA in amplifying Stra8, rather than being the initial inducer of Stra8. These findings should reactivate the quest to identify meiotic preventing or inducing substances.


2014 ◽  
Vol 29 (4) ◽  
pp. 673-681 ◽  
Author(s):  
E. Tancrède-Bohin ◽  
T. Baldeweck ◽  
E. Decencière ◽  
S. Brizion ◽  
S. Victorin ◽  
...  

2019 ◽  
Vol 130 ◽  
pp. 32-43 ◽  
Author(s):  
Elias Begas ◽  
Maria Bounitsi ◽  
Thomas Kilindris ◽  
Evangelos Kouvaras ◽  
Konstantinos Makaritsis ◽  
...  

Nano Letters ◽  
2019 ◽  
Vol 19 (8) ◽  
pp. 5260-5265 ◽  
Author(s):  
Hongji Liu ◽  
Xiangquan Deng ◽  
Shen Tong ◽  
Chen He ◽  
Hui Cheng ◽  
...  

Cancers ◽  
2021 ◽  
Vol 13 (9) ◽  
pp. 2143
Author(s):  
Maria Hernandez-Valladares ◽  
Rebecca Wangen ◽  
Elise Aasebø ◽  
Håkon Reikvam ◽  
Frode S. Berven ◽  
...  

All-trans retinoic acid (ATRA) and valproic acid (VP) have been tried in the treatment of non-promyelocytic variants of acute myeloid leukemia (AML). Non-randomized studies suggest that the two drugs can stabilize AML and improve normal peripheral blood cell counts. In this context, we used a proteomic/phosphoproteomic strategy to investigate the in vivo effects of ATRA/VP on human AML cells. Before starting the combined treatment, AML responders showed increased levels of several proteins, especially those involved in neutrophil degranulation/differentiation, M phase regulation and the interconversion of nucleotide di- and triphosphates (i.e., DNA synthesis and binding). Several among the differentially regulated phosphorylation sites reflected differences in the regulation of RNA metabolism and apoptotic events at the same time point. These effects were mainly caused by increased cyclin dependent kinase 1 and 2 (CDK1/2), LIM domain kinase 1 and 2 (LIMK1/2), mitogen-activated protein kinase 7 (MAPK7) and protein kinase C delta (PRKCD) activity in responder cells. An extensive effect of in vivo treatment with ATRA/VP was the altered level and phosphorylation of proteins involved in the regulation of transcription/translation/RNA metabolism, especially in non-responders, but the regulation of cell metabolism, immune system and cytoskeletal functions were also affected. Our analysis of serial samples during the first week of treatment suggest that proteomic and phosphoproteomic profiling can be used for the early identification of responders to ATRA/VP-based treatment.


Sign in / Sign up

Export Citation Format

Share Document