scholarly journals GW25-e3473 In vivo quantification of VCAM-1 expression in atherosclerosis model using non-invasive targeted ultrasound imaging

2014 ◽  
Vol 64 (16) ◽  
pp. C225-C226
Author(s):  
Mu Yuming ◽  
Liu Liyun ◽  
Han Wei ◽  
Wang Chunmei ◽  
Tang Qi
1999 ◽  
Vol 81 (3) ◽  
pp. 520-527 ◽  
Author(s):  
G J Czarnota ◽  
M C Kolios ◽  
J Abraham ◽  
M Portnoy ◽  
F P Ottensmeyer ◽  
...  

2021 ◽  
Author(s):  
Qian Zhang ◽  
Wen Wang ◽  
Hongyuan Shen ◽  
Hongyu Tao ◽  
Yating Wu ◽  
...  

Abstract The metastasis of breast cancer is believed to have a negative effect on its prognosis. Benefiting from the remarkable deep-penetrating and non-invasive characteristics, sonodynamic therapy (SDT) demonstrates a whole series of potential leading to cancer treatment. To relieve the limitation of monotherapy, a multifunctional nanoplatform has been explored to realize the synergistic treatment efficiency. Herein, we establish a novel multifunctional nano-system which encapsulates chlorin e6 (Ce6, for SDT), perfluoropentane (PFP, for ultrasound imaging), and docetaxel (DTX, for chemotherapy) in a well-designed PLGA core-shell structure. The synergistic nanoparticle (CPDP NPs) featured with excellent biocompatibility and stability primarily enables its further application. Upon low intensity focused ultrasound (LIFU) irradiation, the enhanced ultrasound imaging could be revealed both in vitro and in vivo. More importantly, combined with LIFU, the nanoparticle exhibits intriguing antitumor capability through Ce6 induced cytotoxic reactive oxygen species as well as DTX releasing to generate a concerted therapeutic efficiency. Furthermore, this treating strategy actives a strong anti-metastasis capability by which lung metastatic nodules have been significantly reduced. The results indicate that the SDT-oriented nanoplatform combined with chemotherapy could be provided as a promising approach in elevating effective synergistic therapy and suppressing lung metastasis of breast cancer.


2018 ◽  
Vol 38 (2) ◽  
pp. 299-305 ◽  
Author(s):  
Yun Yuan ◽  
Ying Liu ◽  
Xiang-Ming Zhu ◽  
Jing Hu ◽  
Chen-Yang Zhao ◽  
...  

2005 ◽  
Vol 2 (2) ◽  
pp. 133-140 ◽  
Author(s):  
D. Mietchen ◽  
H. Keupp ◽  
B. Manz ◽  
F. Volke

Abstract. For more than a decade, Magnetic Resonance Imaging (MRI) has been routinely employed in clinical diagnostics because it allows non-invasive studies of anatomical structures and physiological processes in vivo and to differentiate between healthy and pathological states, particularly of soft tissue. Here, we demonstrate that MRI can likewise be applied to fossilized biological samples and help in elucidating paleopathological and paleoecological questions: Five anomalous guards of Jurassic and Cretaceous belemnites are presented along with putative paleopathological diagnoses directly derived from 3D MR images with microscopic resolution. Syn vivo deformities of both the mineralized internal rostrum and the surrounding former soft tissue can be traced back in part to traumatic events of predator-prey-interactions, and partly to parasitism. Besides, evidence is presented that the frequently observed anomalous apical collar might be indicative of an inflammatory disease. These findings highlight the potential of Magnetic Resonance techniques for further paleontological applications.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Skaidre Jankovskaja ◽  
Johan Engblom ◽  
Melinda Rezeli ◽  
György Marko-Varga ◽  
Tautgirdas Ruzgas ◽  
...  

AbstractThe tryptophan to kynurenine ratio (Trp/Kyn) has been proposed as a cancer biomarker. Non-invasive topical sampling of Trp/Kyn can therefore serve as a promising concept for skin cancer diagnostics. By performing in vitro pig skin permeability studies, we conclude that non-invasive topical sampling of Trp and Kyn is feasible. We explore the influence of different experimental conditions, which are relevant for the clinical in vivo setting, such as pH variations, sampling time, and microbial degradation of Trp and Kyn. The permeabilities of Trp and Kyn are overall similar. However, the permeated Trp/Kyn ratio is generally higher than unity due to endogenous Trp, which should be taken into account to obtain a non-biased Trp/Kyn ratio accurately reflecting systemic concentrations. Additionally, prolonged sampling time is associated with bacterial Trp and Kyn degradation and should be considered in a clinical setting. Finally, the experimental results are supported by the four permeation pathways model, predicting that the hydrophilic Trp and Kyn molecules mainly permeate through lipid defects (i.e., the porous pathway). However, the hydrophobic indole ring of Trp is suggested to result in a small but noticeable relative increase of Trp diffusion via pathways across the SC lipid lamellae, while the shunt pathway is proposed to slightly favor permeation of Kyn relative to Trp.


Sign in / Sign up

Export Citation Format

Share Document