Nitrogen-doped SiO2–HNb3O8 for rhodamine B photodegradation under visible light

2011 ◽  
Vol 509 (21) ◽  
pp. 6252-6256 ◽  
Author(s):  
Xiukai Li ◽  
Huiqi Pan ◽  
Qingsong Hu ◽  
Chi Zhang
2020 ◽  
pp. 174751982093867
Author(s):  
Zhen Zhang ◽  
Shao-dong Qin ◽  
Jing-yun Chen ◽  
Jing Li ◽  
Ai-hua Xing

The synthesis of surface defect TiO2-x nanobelts with excellent visible light absorption is important to reduce costs, increase stability, and improve photocatalytic activity. In this work, we report that nitrogen-doped surface defect TiO2-x nanobelts are synthesized by annealing pristine TiO2 nanobelts in Ar/H2 (95%/5%) atmosphere followed by subsequent heat treatment in NH3 at various temperatures. The aim is to study the effect of the extent of the N-doping amount in the lattice of TiO2-x nanobelts on light absorption and photocatalytic activity. Considering the increase in organic pollutants in wastewater, the photocatalytic activity is measured by degrading rhodamine B (RhB) dye in water. The results demonstrate that the calcination temperature affects the doping level of N, and the b-TiO2-N550 sample exhibits higher photocatalytic performance than that of other samples under visible-light irradiation for the degradation of rhodamine B, which is up to 96.11%. The enhancement is ascribed to the synergistic effect of N-doping and self-doping oxygen vacancy (which extend the visible light absorption) and the separation efficiency of photogenerated carriers, which improves the photocatalytic activity.


2015 ◽  
Vol 2015 ◽  
pp. 1-5 ◽  
Author(s):  
Guihua Chen ◽  
Gangling Chen ◽  
Yong Wang ◽  
Qingfeng Wang ◽  
Zhen Zhang

A nitrogen doped BiOCl (N-BiOCl) photocatalyst was synthesized and characterized using an ethylenediamine-assisted hydrothermal method. The N-BiOCl sample demonstrated the same tetragonal crystal structure as the as-prepared pure BiOCl sample. SEM results indicated that N-BiOCl sample was self-assembled by nanoplates to provide an aggregated flower-like microstructure. Doped nitrogen was substituted for oxygen in the crystal lattice of BiOCl, causing a red shift for N-BiOCl sample compared to BiOCl sample. The N-BiOCl sample exhibited higher photocatalytic activity in the degradation of Rhodamine B under visible light than observed in BiOCl sample, and the stability of the sample was verified. Meanwhile, speculative causes for the enhancement in the photocatalytic activity of N-BiOCl sample were also proposed.


Nanomaterials ◽  
2020 ◽  
Vol 10 (11) ◽  
pp. 2206
Author(s):  
Gaoqian Yuan ◽  
Gen Zhang ◽  
Kezhuo Li ◽  
Faliang Li ◽  
Yunbo Cao ◽  
...  

Loading a noble metal on Bi4Ti3O12 could enable the formation of the Schottky barrier at the interface between the former and the latter, which causes electrons to be trapped and inhibits the recombination of photoelectrons and photoholes. In this paper, AgPt/Bi4Ti3O12 composite photocatalysts were prepared using the photoreduction method, and the effects of the type and content of noble metal on the photocatalytic performance of the catalysts were investigated. The photocatalytic degradation of rhodamine B (RhB) showed that the loading of AgPt bimetallic nanoparticles significantly improved the catalytic performance of Bi4Ti3O12. When 0.10 wt% noble metal was loaded, the degradation rate for RhB of Ag0.7Pt0.3/Bi4Ti3O12 was 0.027 min−1, which was respectively about 2, 1.7 and 3.7 times as that of Ag/Bi4Ti3O12, Pt/Bi3Ti4O12 and Bi4Ti3O12. The reasons may be attributed as follows: (i) the utilization of visible light was enhanced due to the surface plasmon resonance effect of Ag and Pt in the visible region; (ii) Ag nanoparticles mainly acted as electron acceptors to restrain the recombination of photogenerated electron-hole pairs under visible light irradiation; and (iii) Pt nanoparticles acted as electron cocatalysts to further suppress the recombination of photogenerated electron-hole pairs. The photocatalytic performance of Ag0.7Pt0.3/Bi4Ti3O12 was superior to that of Ag/Bi4Ti3O12 and Pt/Bi3Ti4O12 owing to the synergistic effect between Ag and Pt nanoparticles.


2021 ◽  
Vol 4 (2) ◽  
pp. 1149-1161 ◽  
Author(s):  
Ana Rovisco ◽  
Rita Branquinho ◽  
Jonas Deuermeier ◽  
Tomás Freire ◽  
Elvira Fortunato ◽  
...  

2021 ◽  
Author(s):  
Alagan Muthurasu ◽  
V GANESH

Carbon dots (CDs) exhibiting fluorescence property are generally derived from carbonaceous materials and possessing ultra small size with various exciting physical, chemical and photo-properties that have been used in many...


Sign in / Sign up

Export Citation Format

Share Document